In [ ]:
In [4]:
import atmPy
In [7]:
fname = '/Volumes/HTelg_4TB_Backup/arm_data/SGP/aossmpsE13/sgpaossmpsE13.a1.20161118.000048.nc'
aossmps = atmPy.data_archives.arm.open_path(fname)
In [8]:
aossmps.plot()
Out[8]:
In [5]:
fname = '/Volumes/HTelg_4TB_Backup/arm_data/SGP/aossmpsE13/sgpaossmpsE13.a1.20161117.000000.nc'
ds = xr.open_dataset(fname, )
In [15]:
(~np.isnan(ds.number_size_distribution.data.flatten())).sum()
Out[15]:
In [29]:
(~np.isnan(ds.number_size_distribution.data.flatten())).shape
Out[29]:
In [17]:
import atmPy
In [36]:
i = 220
ds.number_size_distribution#.to_pandas().iloc[i:i+20,80:100]
Out[36]:
In [ ]:
In [23]:
be, bn = atmPy.aerosols.size_distribution.diameter_binning.bincenters2binsANDnames(ds.diameter_midpoint.data)
In [24]:
be.shape, ds.diameter_midpoint.shape
Out[24]:
In [ ]: