Visualization of pre-generated images.

This is a notebook to load and display pre-generated images used in parameter exploration.


In [1]:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.image as mpimg
# Widgets library
from ipywidgets import interact
%matplotlib inline

In [2]:
# We need to load all the files here

In [3]:
# Load the file
folder = '../results/'
name = 'parameter_swep_SLM-0.00-0.00-10.00.png'
file_name = folder + name
image = mpimg.imread(file_name)

In [4]:
# Now let's plot it
figsize = (16, 12)
figure = plt.figure(figsize=figsize)
ax = figure.add_subplot(1, 1, 1)
ax.set_axis_off()
ax.imshow(image)


Out[4]:
<matplotlib.image.AxesImage at 0x7f59f4dba7b8>

Now we need to build a function that takes distance, base and value as a parameter and returns the the SLE, STDM, Visualize Cluster Matrix.


In [5]:
def load_SLM(base, distance, value):
    # Load the image
    folder = '../results/'
    name = 'parameter_swep_SLM'
    parameter_marker = '-{0:4.2f}-{1:4.2f}-{2:4.2f}'.format(base, distance, value)
    file_name = folder + name + parameter_marker + '.png'
    image = mpimg.imread(file_name)
    # Plot 
    figsize = (16, 12)
    figure = plt.figure(figsize=figsize)
    ax = figure.add_subplot(1, 1, 1)
    ax.set_axis_off()
    ax.imshow(image)

In [6]:
def load_STDM(base, distance, value):
    folder = '../results/'
    name = 'parameter_swep_STDM'
    parameter_marker = '-{0:5.2f}-{1:5.2f}-{2:5.2f}'.format(base, distance, value)
    file_name = folder + name + parameter_marker + '.png'
    image = mpimg.imread(file_name)
    # Plot 
    figsize = (16, 12)
    figure = plt.figure(figsize=figsize)
    ax = figure.add_subplot(1, 1, 1)
    ax.set_axis_off()
    ax.imshow(image)

In [7]:
def load_cluster(distance, base, value):
    folder = '../results/'
    name = 'parameter_swep_cluster'
    parameter_marker = '-{0:5.2f}-{1:5.2f}-{2:5.2f}'.format(base, distance, value)
    file_name = folder + name + parameter_marker + '.png'
    image = mpimg.imread(file_name)
    # Plot 
    figsize = (16, 12)
    figure = plt.figure(figsize=figsize)
    ax = figure.add_subplot(1, 1, 1)
    ax.set_axis_off()
    ax.imshow(image)

In [8]:
def load_cluster_SLM(base, distance, value):
    folder = '../results/'
    name = 'parameter_swep_cluster_SLM'
    parameter_marker = '-{0:5.2f}-{1:5.2f}-{2:5.2f}'.format(base, distance, value)
    file_name = folder + name + parameter_marker + '.png'
    image = mpimg.imread(file_name)
    # Plot 
    figsize = (16, 12)
    figure = plt.figure(figsize=figsize)
    ax = figure.add_subplot(1, 1, 1)
    ax.set_axis_off()
    ax.imshow(image)

Now we build the widget for each exploration


In [9]:
interact(load_SLM, base=(0, 200, 40), distance=(0, 601, 40), value=(10, 200, 38))



In [10]:
interact(load_STDM, base=(0, 200, 40), distance=(0, 601, 40), value=(10, 200, 38))



In [11]:
interact(load_cluster, base=(0, 200, 40), distance=(0, 601, 40), value=(10, 200, 38))


Out[11]:
<function __main__.load_cluster>

In [12]:
interact(load_cluster_SLM, base=(0, 200, 40), distance=(0, 601, 40), value=(10, 200, 38))


Out[12]:
<function __main__.load_cluster_SLM>

In [ ]: