In [2]:
import numpy as np
import pylab as pl
from network_correlations import *
% matplotlib inline
In [5]:
'''
1) Plot the rates of neuron 1 and neuron 2 together using the provided code. What
happens when you induce correlations?
'''
stimulus1 = -np.pi/4
stimulus2 = 5./16*np.pi
phi_pref1 = 0. # preferred orientation of neuron 1
phi_pref2 = np.pi/4 # preferred orientation of neuron 2
c=.0 # correlation between background inputs to the neurons
outputrate=orientation_tuning(phi_pref1, phi_pref2, stimulus1, c)
outputrate2=orientation_tuning(phi_pref1, phi_pref2, stimulus2, c)
pl.figure()
pl.title('Stimulus response')
pl.scatter(outputrate[0,:],outputrate[1,:],edgecolor='none',alpha=0.25)
pl.scatter(outputrate2[0,:],outputrate2[1,:],edgecolor='none',facecolor='r',alpha=0.25)
pl.xlabel(r'$\nu_1$')
pl.ylabel(r'$\nu_2$')
pl.xlim([5,20])
pl.ylim([5,20])
Out[5]:
In [ ]:
'''
2) Try different combinations of stimuli and preferred orientation and check how
noise correlations affect the separability of the output firing rates.
'''
In [ ]:
'''
3) How does the difference between prefered orientations relate to signal correlations?
'''