Orientation Change
- The orientation changes are drawn from a Von Misses Distribution.
- Close to normal distribution in a circle but does not require inifite sum.
- Makes the trajectory a correlated random walk.
- $\kappa$ can be expressed in terms of the angular deviation $\sigma_{\delta}$
$$ f_\Phi(\phi, \kappa) = \frac{e^{\kappa\cos(\phi)}}{2 \pi I_0(\kappa)} $$
Where $ I_0 $ denotes the modified Bessel function.
The Parameter $\kappa$ controls the peakedness of it.