Image Classification

In this project, you'll classify images from the CIFAR-10 dataset. The dataset consists of airplanes, dogs, cats, and other objects. You'll preprocess the images, then train a convolutional neural network on all the samples. The images need to be normalized and the labels need to be one-hot encoded. You'll get to apply what you learned and build a convolutional, max pooling, dropout, and fully connected layers. At the end, you'll get to see your neural network's predictions on the sample images.

Get the Data

Run the following cell to download the CIFAR-10 dataset for python.


In [ ]:
"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
import tarfile

cifar10_dataset_folder_path = 'cifar-10-batches-py'

# Use Floyd's cifar-10 dataset if present
floyd_cifar10_location = '/input/cifar-10/python.tar.gz'
if isfile(floyd_cifar10_location):
    tar_gz_path = floyd_cifar10_location
else:
    tar_gz_path = 'cifar-10-python.tar.gz'

class DLProgress(tqdm):
    last_block = 0

    def hook(self, block_num=1, block_size=1, total_size=None):
        self.total = total_size
        self.update((block_num - self.last_block) * block_size)
        self.last_block = block_num

if not isfile(tar_gz_path):
    with DLProgress(unit='B', unit_scale=True, miniters=1, desc='CIFAR-10 Dataset') as pbar:
        urlretrieve(
            'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz',
            tar_gz_path,
            pbar.hook)

if not isdir(cifar10_dataset_folder_path):
    with tarfile.open(tar_gz_path) as tar:
        tar.extractall()
        tar.close()

tests.test_folder_path(cifar10_dataset_folder_path)

In [1]:
# I replaced the above cell with this one (assuming I already have the data in my disk)
from urllib.request import urlretrieve
from os.path import isfile, isdir
from tqdm import tqdm
import problem_unittests as tests
cifar10_dataset_folder_path = '/home/guy/datasets/cifar-10-batches-py'

tests.test_folder_path(cifar10_dataset_folder_path)


All files found!

Explore the Data

The dataset is broken into batches to prevent your machine from running out of memory. The CIFAR-10 dataset consists of 5 batches, named data_batch_1, data_batch_2, etc.. Each batch contains the labels and images that are one of the following:

  • airplane
  • automobile
  • bird
  • cat
  • deer
  • dog
  • frog
  • horse
  • ship
  • truck

Understanding a dataset is part of making predictions on the data. Play around with the code cell below by changing the batch_id and sample_id. The batch_id is the id for a batch (1-5). The sample_id is the id for a image and label pair in the batch.

Ask yourself "What are all possible labels?", "What is the range of values for the image data?", "Are the labels in order or random?". Answers to questions like these will help you preprocess the data and end up with better predictions.


In [2]:
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import helper
import numpy as np
# Explore the dataset
batch_id = 1
sample_id = 5
helper.display_stats(cifar10_dataset_folder_path, batch_id, sample_id)


Stats of batch 1:
Samples: 10000
Label Counts: {0: 1005, 1: 974, 2: 1032, 3: 1016, 4: 999, 5: 937, 6: 1030, 7: 1001, 8: 1025, 9: 981}
First 20 Labels: [6, 9, 9, 4, 1, 1, 2, 7, 8, 3, 4, 7, 7, 2, 9, 9, 9, 3, 2, 6]

Example of Image 5:
Image - Min Value: 0 Max Value: 252
Image - Shape: (32, 32, 3)
Label - Label Id: 1 Name: automobile

Implement Preprocess Functions

Normalize

In the cell below, implement the normalize function to take in image data, x, and return it as a normalized Numpy array. The values should be in the range of 0 to 1, inclusive. The return object should be the same shape as x.


In [3]:
def normalize(x):
    """
    Normalize a list of sample image data in the range of 0 to 1
    : x: List of image data.  The image shape is (32, 32, 3)
    : return: Numpy array of normalize data
    """
    # TODO: Implement Function
    return x/np.max(x)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_normalize(normalize)


Tests Passed

One-hot encode

Just like the previous code cell, you'll be implementing a function for preprocessing. This time, you'll implement the one_hot_encode function. The input, x, are a list of labels. Implement the function to return the list of labels as One-Hot encoded Numpy array. The possible values for labels are 0 to 9. The one-hot encoding function should return the same encoding for each value between each call to one_hot_encode. Make sure to save the map of encodings outside the function.

Hint: Don't reinvent the wheel.


In [4]:
def one_hot_encode(x):
    """
    One hot encode a list of sample labels. Return a one-hot encoded vector for each label.
    : x: List of sample Labels
    : return: Numpy array of one-hot encoded labels
    """
    # TODO: Implement Function
    n_values=10
    labels=np.arange(n_values)
    return np.eye(n_values)[x]



"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_one_hot_encode(one_hot_encode)


Tests Passed

Randomize Data

As you saw from exploring the data above, the order of the samples are randomized. It doesn't hurt to randomize it again, but you don't need to for this dataset.

Preprocess all the data and save it

Running the code cell below will preprocess all the CIFAR-10 data and save it to file. The code below also uses 10% of the training data for validation.


In [5]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
# Preprocess Training, Validation, and Testing Data
helper.preprocess_and_save_data(cifar10_dataset_folder_path, normalize, one_hot_encode)

Check Point

This is your first checkpoint. If you ever decide to come back to this notebook or have to restart the notebook, you can start from here. The preprocessed data has been saved to disk.


In [6]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import pickle
import problem_unittests as tests
import helper

# Load the Preprocessed Validation data
valid_features, valid_labels = pickle.load(open('preprocess_validation.p', mode='rb'))

Build the network

For the neural network, you'll build each layer into a function. Most of the code you've seen has been outside of functions. To test your code more thoroughly, we require that you put each layer in a function. This allows us to give you better feedback and test for simple mistakes using our unittests before you submit your project.

Note: If you're finding it hard to dedicate enough time for this course each week, we've provided a small shortcut to this part of the project. In the next couple of problems, you'll have the option to use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages to build each layer, except the layers you build in the "Convolutional and Max Pooling Layer" section. TF Layers is similar to Keras's and TFLearn's abstraction to layers, so it's easy to pickup.

However, if you would like to get the most out of this course, try to solve all the problems without using anything from the TF Layers packages. You can still use classes from other packages that happen to have the same name as ones you find in TF Layers! For example, instead of using the TF Layers version of the conv2d class, tf.layers.conv2d, you would want to use the TF Neural Network version of conv2d, tf.nn.conv2d.

Let's begin!

Input

The neural network needs to read the image data, one-hot encoded labels, and dropout keep probability. Implement the following functions

  • Implement neural_net_image_input
    • Return a TF Placeholder
    • Set the shape using image_shape with batch size set to None.
    • Name the TensorFlow placeholder "x" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_label_input
    • Return a TF Placeholder
    • Set the shape using n_classes with batch size set to None.
    • Name the TensorFlow placeholder "y" using the TensorFlow name parameter in the TF Placeholder.
  • Implement neural_net_keep_prob_input
    • Return a TF Placeholder for dropout keep probability.
    • Name the TensorFlow placeholder "keep_prob" using the TensorFlow name parameter in the TF Placeholder.

These names will be used at the end of the project to load your saved model.

Note: None for shapes in TensorFlow allow for a dynamic size.


In [7]:
import tensorflow as tf

def neural_net_image_input(image_shape):
    """
    Return a Tensor for a batch of image input
    : image_shape: Shape of the images
    : return: Tensor for image input.
    """
    # TODO: Implement Function
#    print(image_shape)
#    print (type(image_shape))
    return tf.placeholder(tf.float32,shape=tuple([None]+list(image_shape)),name="x")



def neural_net_label_input(n_classes):
    """
    Return a Tensor for a batch of label input
    : n_classes: Number of classes
    : return: Tensor for label input.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.int32,shape=(None,n_classes),name="y")


def neural_net_keep_prob_input():
    """
    Return a Tensor for keep probability
    : return: Tensor for keep probability.
    """
    # TODO: Implement Function
    return tf.placeholder(tf.float32,name="keep_prob")


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tf.reset_default_graph()
tests.test_nn_image_inputs(neural_net_image_input)
tests.test_nn_label_inputs(neural_net_label_input)
tests.test_nn_keep_prob_inputs(neural_net_keep_prob_input)


Image Input Tests Passed.
Label Input Tests Passed.
Keep Prob Tests Passed.

Convolution and Max Pooling Layer

Convolution layers have a lot of success with images. For this code cell, you should implement the function conv2d_maxpool to apply convolution then max pooling:

  • Create the weight and bias using conv_ksize, conv_num_outputs and the shape of x_tensor.
  • Apply a convolution to x_tensor using weight and conv_strides.
    • We recommend you use same padding, but you're welcome to use any padding.
  • Add bias
  • Add a nonlinear activation to the convolution.
  • Apply Max Pooling using pool_ksize and pool_strides.
    • We recommend you use same padding, but you're welcome to use any padding.

Note: You can't use TensorFlow Layers or TensorFlow Layers (contrib) for this layer, but you can still use TensorFlow's Neural Network package. You may still use the shortcut option for all the other layers.


In [8]:
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides):
    """
    Apply convolution then max pooling to x_tensor
    :param x_tensor: TensorFlow Tensor
    :param conv_num_outputs: Number of outputs for the convolutional layer
    :param conv_ksize: kernal size 2-D Tuple for the convolutional layer
    :param conv_strides: Stride 2-D Tuple for convolution
    :param pool_ksize: kernal size 2-D Tuple for pool
    :param pool_strides: Stride 2-D Tuple for pool
    : return: A tensor that represents convolution and max pooling of x_tensor
    """
    W = tf.Variable(tf.truncated_normal(list(conv_ksize)+[x_tensor.shape.as_list()[3],conv_num_outputs],stddev=0.1),name='conv_weights')
    b= tf.Variable(tf.zeros([conv_num_outputs]),name='conv_biases')
    out = tf.nn.conv2d(x_tensor,
                       W,
                       [1]+list(conv_strides)+[1],
                       "SAME")
    out=tf.nn.bias_add(out,b)

    out=tf.nn.relu(out) # apply activation
    out=tf.nn.max_pool(out,[1]+list(pool_ksize)+[1],[1]+list(pool_strides)+[1],'SAME')  # max pooling
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_con_pool(conv2d_maxpool)


Tests Passed

Flatten Layer

Implement the flatten function to change the dimension of x_tensor from a 4-D tensor to a 2-D tensor. The output should be the shape (Batch Size, Flattened Image Size). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [9]:
def flatten(x_tensor):
    """
    Flatten x_tensor to (Batch Size, Flattened Image Size)
    : x_tensor: A tensor of size (Batch Size, ...), where ... are the image dimensions.
    : return: A tensor of size (Batch Size, Flattened Image Size).
    """
    # TODO: Implement Function
    return tf.reshape(x_tensor,[-1,np.prod(x_tensor.shape.as_list()[1:])])


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_flatten(flatten)


Tests Passed

Fully-Connected Layer

Implement the fully_conn function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.


In [10]:
def fully_conn(x_tensor, num_outputs):
    """
    Apply a fully connected layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    n_features=x_tensor.shape.as_list()[1]
    W = tf.Variable(tf.truncated_normal([n_features,num_outputs],stddev=0.1),name='fc_weights')
    b= tf.Variable(tf.zeros([num_outputs]),name='fc_biases')
    out=tf.matmul(x_tensor,W)
    out=tf.nn.bias_add(out,b)

    out=tf.nn.relu(out) # apply activation

    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_fully_conn(fully_conn)


Tests Passed

Output Layer

Implement the output function to apply a fully connected layer to x_tensor with the shape (Batch Size, num_outputs). Shortcut option: you can use classes from the TensorFlow Layers or TensorFlow Layers (contrib) packages for this layer. For more of a challenge, only use other TensorFlow packages.

Note: Activation, softmax, or cross entropy should not be applied to this.


In [11]:
def output(x_tensor, num_outputs):
    """
    Apply a output layer to x_tensor using weight and bias
    : x_tensor: A 2-D tensor where the first dimension is batch size.
    : num_outputs: The number of output that the new tensor should be.
    : return: A 2-D tensor where the second dimension is num_outputs.
    """
    n_features=x_tensor.shape.as_list()[1]
    W = tf.Variable(tf.truncated_normal([n_features,num_outputs],stddev=0.1),name='out_weights')
    b= tf.Variable(tf.zeros([num_outputs]),name='out_biases')
    out=tf.matmul(x_tensor,W)
    out=tf.nn.bias_add(out,b)

    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_output(output)


Tests Passed

Create Convolutional Model

Implement the function conv_net to create a convolutional neural network model. The function takes in a batch of images, x, and outputs logits. Use the layers you created above to create this model:

  • Apply 1, 2, or 3 Convolution and Max Pool layers
  • Apply a Flatten Layer
  • Apply 1, 2, or 3 Fully Connected Layers
  • Apply an Output Layer
  • Return the output
  • Apply TensorFlow's Dropout to one or more layers in the model using keep_prob.

In [12]:
def conv_net(x, keep_prob):
    """
    Create a convolutional neural network model
    : x: Placeholder tensor that holds image data.
    : keep_prob: Placeholder tensor that hold dropout keep probability.
    : return: Tensor that represents logits
    """
    # TODO: Apply 1, 2, or 3 Convolution and Max Pool layers
    #    Play around with different number of outputs, kernel size and stride
    # Function Definition from Above:
    #    conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides)
    layer = conv2d_maxpool(x, 64, (3,3), (1,1) ,(2,2) , (2,2))
    layer = conv2d_maxpool(layer, 128, (3, 3), (1, 1), (2, 2), (2, 2))
#    layer = conv2d_maxpool(layer, 256, (3, 3), (1, 1), (2, 2), (2, 2))

    # TODO: Apply a Flatten Layer
    # Function Definition from Above:
    #   flatten(x_tensor)
    layer = flatten(layer)


    # TODO: Apply 1, 2, or 3 Fully Connected Layers
    #    Play around with different number of outputs
    # Function Definition from Above:
    #   fully_conn(x_tensor, num_outputs)
    layer=fully_conn(layer,128)
    layer=tf.nn.dropout(layer,keep_prob)

    # TODO: Apply an Output Layer
    #    Set this to the number of classes
    # Function Definition from Above:
    #   output(x_tensor, num_outputs)
    out=output(layer,10)

    # TODO: return output
    return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""

##############################
## Build the Neural Network ##
##############################

# Remove previous weights, bias, inputs, etc..
tf.reset_default_graph()

# Inputs
x = neural_net_image_input((32, 32, 3))
y = neural_net_label_input(10)
keep_prob = neural_net_keep_prob_input()

# Model
logits = conv_net(x, keep_prob)

# Name logits Tensor, so that is can be loaded from disk after training
logits = tf.identity(logits, name='logits')

# Loss and Optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

# Accuracy
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')

tests.test_conv_net(conv_net)


Neural Network Built!

Train the Neural Network

Single Optimization

Implement the function train_neural_network to do a single optimization. The optimization should use optimizer to optimize in session with a feed_dict of the following:

  • x for image input
  • y for labels
  • keep_prob for keep probability for dropout

This function will be called for each batch, so tf.global_variables_initializer() has already been called.

Note: Nothing needs to be returned. This function is only optimizing the neural network.


In [13]:
def train_neural_network(session, optimizer, keep_probability, feature_batch, label_batch):
    """
    Optimize the session on a batch of images and labels
    : session: Current TensorFlow session
    : optimizer: TensorFlow optimizer function
    : keep_probability: keep probability
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    """
    session.run(optimizer,feed_dict={x:feature_batch,y:label_batch,keep_prob:keep_probability})
    return


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_train_nn(train_neural_network)


Tests Passed

Show Stats

Implement the function print_stats to print loss and validation accuracy. Use the global variables valid_features and valid_labels to calculate validation accuracy. Use a keep probability of 1.0 to calculate the loss and validation accuracy.


In [14]:
def print_stats(session, feature_batch, label_batch, cost, accuracy):
    """
    Print information about loss and validation accuracy
    : session: Current TensorFlow session
    : feature_batch: Batch of Numpy image data
    : label_batch: Batch of Numpy label data
    : cost: TensorFlow cost function
    : accuracy: TensorFlow accuracy function
    """
    Loss_valid,Acc_valid=session.run([cost,accuracy],feed_dict={x:valid_features,y:valid_labels,keep_prob:1.0})
    print('validation loss:{} , validation accuracy:{}'.format(Loss_valid,Acc_valid))

Hyperparameters

Tune the following parameters:

  • Set epochs to the number of iterations until the network stops learning or start overfitting
  • Set batch_size to the highest number that your machine has memory for. Most people set them to common sizes of memory:
    • 64
    • 128
    • 256
    • ...
  • Set keep_probability to the probability of keeping a node using dropout

In [15]:
# TODO: Tune Parameters
epochs = 30
batch_size = 128
keep_probability = 0.5

Train on a Single CIFAR-10 Batch

Instead of training the neural network on all the CIFAR-10 batches of data, let's use a single batch. This should save time while you iterate on the model to get a better accuracy. Once the final validation accuracy is 50% or greater, run the model on all the data in the next section.


In [16]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
print('Checking the Training on a Single Batch...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        batch_i = 1
        for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
            train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
        print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
        print_stats(sess, batch_features, batch_labels, cost, accuracy)


Checking the Training on a Single Batch...
Epoch  1, CIFAR-10 Batch 1:  validation loss:1.9075076580047607 , validation accuracy:0.343999981880188
Epoch  2, CIFAR-10 Batch 1:  validation loss:1.6380027532577515 , validation accuracy:0.4307999312877655
Epoch  3, CIFAR-10 Batch 1:  validation loss:1.4770456552505493 , validation accuracy:0.4753999710083008
Epoch  4, CIFAR-10 Batch 1:  validation loss:1.3973438739776611 , validation accuracy:0.49779996275901794
Epoch  5, CIFAR-10 Batch 1:  validation loss:1.4004145860671997 , validation accuracy:0.4975999891757965
Epoch  6, CIFAR-10 Batch 1:  validation loss:1.3314100503921509 , validation accuracy:0.5321999788284302
Epoch  7, CIFAR-10 Batch 1:  validation loss:1.3388279676437378 , validation accuracy:0.5333999395370483
Epoch  8, CIFAR-10 Batch 1:  validation loss:1.2785346508026123 , validation accuracy:0.5509998798370361
Epoch  9, CIFAR-10 Batch 1:  validation loss:1.2359248399734497 , validation accuracy:0.5665999054908752
Epoch 10, CIFAR-10 Batch 1:  validation loss:1.2018533945083618 , validation accuracy:0.5733999013900757
Epoch 11, CIFAR-10 Batch 1:  validation loss:1.1865966320037842 , validation accuracy:0.5767999887466431
Epoch 12, CIFAR-10 Batch 1:  validation loss:1.1457014083862305 , validation accuracy:0.5871999263763428
Epoch 13, CIFAR-10 Batch 1:  validation loss:1.1408085823059082 , validation accuracy:0.5899999141693115
Epoch 14, CIFAR-10 Batch 1:  validation loss:1.1269134283065796 , validation accuracy:0.5965999364852905
Epoch 15, CIFAR-10 Batch 1:  validation loss:1.1235737800598145 , validation accuracy:0.605199933052063
Epoch 16, CIFAR-10 Batch 1:  validation loss:1.1343915462493896 , validation accuracy:0.6075999140739441
Epoch 17, CIFAR-10 Batch 1:  validation loss:1.1391608715057373 , validation accuracy:0.6035999059677124
Epoch 18, CIFAR-10 Batch 1:  validation loss:1.1806387901306152 , validation accuracy:0.5991999506950378
Epoch 19, CIFAR-10 Batch 1:  validation loss:1.1658802032470703 , validation accuracy:0.6035999059677124
Epoch 20, CIFAR-10 Batch 1:  validation loss:1.1499401330947876 , validation accuracy:0.6077998876571655
Epoch 21, CIFAR-10 Batch 1:  validation loss:1.2199872732162476 , validation accuracy:0.5953999757766724
Epoch 22, CIFAR-10 Batch 1:  validation loss:1.1571357250213623 , validation accuracy:0.6151999235153198
Epoch 23, CIFAR-10 Batch 1:  validation loss:1.157101035118103 , validation accuracy:0.6179999113082886
Epoch 24, CIFAR-10 Batch 1:  validation loss:1.1966874599456787 , validation accuracy:0.6181999444961548
Epoch 25, CIFAR-10 Batch 1:  validation loss:1.1957975625991821 , validation accuracy:0.6225998401641846
Epoch 26, CIFAR-10 Batch 1:  validation loss:1.230847954750061 , validation accuracy:0.6169999241828918
Epoch 27, CIFAR-10 Batch 1:  validation loss:1.3104928731918335 , validation accuracy:0.6035999655723572
Epoch 28, CIFAR-10 Batch 1:  validation loss:1.2941690683364868 , validation accuracy:0.6075999140739441
Epoch 29, CIFAR-10 Batch 1:  validation loss:1.299759030342102 , validation accuracy:0.6089999079704285
Epoch 30, CIFAR-10 Batch 1:  validation loss:1.3161307573318481 , validation accuracy:0.6173999309539795

Fully Train the Model

Now that you got a good accuracy with a single CIFAR-10 batch, try it with all five batches.


In [17]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
save_model_path = './image_classification'

print('Training...')
with tf.Session() as sess:
    # Initializing the variables
    sess.run(tf.global_variables_initializer())
    
    # Training cycle
    for epoch in range(epochs):
        # Loop over all batches
        n_batches = 5
        for batch_i in range(1, n_batches + 1):
            for batch_features, batch_labels in helper.load_preprocess_training_batch(batch_i, batch_size):
                train_neural_network(sess, optimizer, keep_probability, batch_features, batch_labels)
            print('Epoch {:>2}, CIFAR-10 Batch {}:  '.format(epoch + 1, batch_i), end='')
            print_stats(sess, batch_features, batch_labels, cost, accuracy)
            
    # Save Model
    saver = tf.train.Saver()
    save_path = saver.save(sess, save_model_path)


Training...
Epoch  1, CIFAR-10 Batch 1:  validation loss:1.9269840717315674 , validation accuracy:0.32179999351501465
Epoch  1, CIFAR-10 Batch 2:  validation loss:1.7504812479019165 , validation accuracy:0.3885999917984009
Epoch  1, CIFAR-10 Batch 3:  validation loss:1.6502389907836914 , validation accuracy:0.39619994163513184
Epoch  1, CIFAR-10 Batch 4:  validation loss:1.5118333101272583 , validation accuracy:0.46299999952316284
Epoch  1, CIFAR-10 Batch 5:  validation loss:1.4632459878921509 , validation accuracy:0.47199997305870056
Epoch  2, CIFAR-10 Batch 1:  validation loss:1.41011643409729 , validation accuracy:0.49379995465278625
Epoch  2, CIFAR-10 Batch 2:  validation loss:1.3639196157455444 , validation accuracy:0.5207999348640442
Epoch  2, CIFAR-10 Batch 3:  validation loss:1.3357913494110107 , validation accuracy:0.5017999410629272
Epoch  2, CIFAR-10 Batch 4:  validation loss:1.3153016567230225 , validation accuracy:0.5267999172210693
Epoch  2, CIFAR-10 Batch 5:  validation loss:1.293233871459961 , validation accuracy:0.5341999530792236
Epoch  3, CIFAR-10 Batch 1:  validation loss:1.2386972904205322 , validation accuracy:0.553399920463562
Epoch  3, CIFAR-10 Batch 2:  validation loss:1.1990762948989868 , validation accuracy:0.5715999007225037
Epoch  3, CIFAR-10 Batch 3:  validation loss:1.1906232833862305 , validation accuracy:0.5649999380111694
Epoch  3, CIFAR-10 Batch 4:  validation loss:1.1426191329956055 , validation accuracy:0.602199912071228
Epoch  3, CIFAR-10 Batch 5:  validation loss:1.132230281829834 , validation accuracy:0.5877999067306519
Epoch  4, CIFAR-10 Batch 1:  validation loss:1.1158506870269775 , validation accuracy:0.606799840927124
Epoch  4, CIFAR-10 Batch 2:  validation loss:1.1058269739151 , validation accuracy:0.6103999018669128
Epoch  4, CIFAR-10 Batch 3:  validation loss:1.0958689451217651 , validation accuracy:0.6073999404907227
Epoch  4, CIFAR-10 Batch 4:  validation loss:1.0484986305236816 , validation accuracy:0.622999906539917
Epoch  4, CIFAR-10 Batch 5:  validation loss:1.066994309425354 , validation accuracy:0.6183999180793762
Epoch  5, CIFAR-10 Batch 1:  validation loss:1.035393476486206 , validation accuracy:0.6365998983383179
Epoch  5, CIFAR-10 Batch 2:  validation loss:1.0377049446105957 , validation accuracy:0.6329998970031738
Epoch  5, CIFAR-10 Batch 3:  validation loss:1.043595314025879 , validation accuracy:0.6329998970031738
Epoch  5, CIFAR-10 Batch 4:  validation loss:0.9926961064338684 , validation accuracy:0.645599901676178
Epoch  5, CIFAR-10 Batch 5:  validation loss:1.0079104900360107 , validation accuracy:0.6469999551773071
Epoch  6, CIFAR-10 Batch 1:  validation loss:0.9709237217903137 , validation accuracy:0.6517998576164246
Epoch  6, CIFAR-10 Batch 2:  validation loss:0.9776337146759033 , validation accuracy:0.6625998616218567
Epoch  6, CIFAR-10 Batch 3:  validation loss:1.0301342010498047 , validation accuracy:0.6391998529434204
Epoch  6, CIFAR-10 Batch 4:  validation loss:0.9545488357543945 , validation accuracy:0.6659998893737793
Epoch  6, CIFAR-10 Batch 5:  validation loss:1.0256015062332153 , validation accuracy:0.6439998745918274
Epoch  7, CIFAR-10 Batch 1:  validation loss:0.9538919925689697 , validation accuracy:0.6579998731613159
Epoch  7, CIFAR-10 Batch 2:  validation loss:0.959526002407074 , validation accuracy:0.6667999029159546
Epoch  7, CIFAR-10 Batch 3:  validation loss:0.9352275133132935 , validation accuracy:0.678399920463562
Epoch  7, CIFAR-10 Batch 4:  validation loss:0.9152687191963196 , validation accuracy:0.6735998392105103
Epoch  7, CIFAR-10 Batch 5:  validation loss:0.9174540042877197 , validation accuracy:0.6797999143600464
Epoch  8, CIFAR-10 Batch 1:  validation loss:0.8985469341278076 , validation accuracy:0.6817998886108398
Epoch  8, CIFAR-10 Batch 2:  validation loss:0.9223667979240417 , validation accuracy:0.6769998669624329
Epoch  8, CIFAR-10 Batch 3:  validation loss:0.8899589776992798 , validation accuracy:0.6901998519897461
Epoch  8, CIFAR-10 Batch 4:  validation loss:0.9304444789886475 , validation accuracy:0.672799825668335
Epoch  8, CIFAR-10 Batch 5:  validation loss:0.9072323441505432 , validation accuracy:0.6843999028205872
Epoch  9, CIFAR-10 Batch 1:  validation loss:0.8773325681686401 , validation accuracy:0.694199800491333
Epoch  9, CIFAR-10 Batch 2:  validation loss:0.9261950850486755 , validation accuracy:0.6773998737335205
Epoch  9, CIFAR-10 Batch 3:  validation loss:0.8796325325965881 , validation accuracy:0.6955998539924622
Epoch  9, CIFAR-10 Batch 4:  validation loss:0.8673050999641418 , validation accuracy:0.6951998472213745
Epoch  9, CIFAR-10 Batch 5:  validation loss:0.8724336624145508 , validation accuracy:0.689599871635437
Epoch 10, CIFAR-10 Batch 1:  validation loss:0.8763700723648071 , validation accuracy:0.6923998594284058
Epoch 10, CIFAR-10 Batch 2:  validation loss:0.9117525815963745 , validation accuracy:0.6883997917175293
Epoch 10, CIFAR-10 Batch 3:  validation loss:0.8423970937728882 , validation accuracy:0.7063998579978943
Epoch 10, CIFAR-10 Batch 4:  validation loss:0.8698657751083374 , validation accuracy:0.696199893951416
Epoch 10, CIFAR-10 Batch 5:  validation loss:0.8510826826095581 , validation accuracy:0.7031998634338379
Epoch 11, CIFAR-10 Batch 1:  validation loss:0.8791681528091431 , validation accuracy:0.6935999393463135
Epoch 11, CIFAR-10 Batch 2:  validation loss:0.8427943587303162 , validation accuracy:0.7095998525619507
Epoch 11, CIFAR-10 Batch 3:  validation loss:0.8340216875076294 , validation accuracy:0.7107998132705688
Epoch 11, CIFAR-10 Batch 4:  validation loss:0.8628998398780823 , validation accuracy:0.6987998485565186
Epoch 11, CIFAR-10 Batch 5:  validation loss:0.8316391706466675 , validation accuracy:0.707399845123291
Epoch 12, CIFAR-10 Batch 1:  validation loss:0.8250821828842163 , validation accuracy:0.7129998207092285
Epoch 12, CIFAR-10 Batch 2:  validation loss:0.8461731672286987 , validation accuracy:0.7087998986244202
Epoch 12, CIFAR-10 Batch 3:  validation loss:0.8558412790298462 , validation accuracy:0.7115998268127441
Epoch 12, CIFAR-10 Batch 4:  validation loss:0.861709475517273 , validation accuracy:0.7043998837471008
Epoch 12, CIFAR-10 Batch 5:  validation loss:0.8392144441604614 , validation accuracy:0.7041998505592346
Epoch 13, CIFAR-10 Batch 1:  validation loss:0.8115301728248596 , validation accuracy:0.7257997989654541
Epoch 13, CIFAR-10 Batch 2:  validation loss:0.8314496278762817 , validation accuracy:0.7179998755455017
Epoch 13, CIFAR-10 Batch 3:  validation loss:0.8589800596237183 , validation accuracy:0.7039998769760132
Epoch 13, CIFAR-10 Batch 4:  validation loss:0.8314014077186584 , validation accuracy:0.7123998403549194
Epoch 13, CIFAR-10 Batch 5:  validation loss:0.848217248916626 , validation accuracy:0.7053998112678528
Epoch 14, CIFAR-10 Batch 1:  validation loss:0.8266608715057373 , validation accuracy:0.7187998294830322
Epoch 14, CIFAR-10 Batch 2:  validation loss:0.8217607140541077 , validation accuracy:0.7215998768806458
Epoch 14, CIFAR-10 Batch 3:  validation loss:0.8213409185409546 , validation accuracy:0.7231998443603516
Epoch 14, CIFAR-10 Batch 4:  validation loss:0.8456187844276428 , validation accuracy:0.7089998722076416
Epoch 14, CIFAR-10 Batch 5:  validation loss:0.8338563442230225 , validation accuracy:0.7155998349189758
Epoch 15, CIFAR-10 Batch 1:  validation loss:0.8181383609771729 , validation accuracy:0.7227998375892639
Epoch 15, CIFAR-10 Batch 2:  validation loss:0.8059773445129395 , validation accuracy:0.727199912071228
Epoch 15, CIFAR-10 Batch 3:  validation loss:0.8223223686218262 , validation accuracy:0.7237998843193054
Epoch 15, CIFAR-10 Batch 4:  validation loss:0.9036659598350525 , validation accuracy:0.7033998370170593
Epoch 15, CIFAR-10 Batch 5:  validation loss:0.824198305606842 , validation accuracy:0.7223998308181763
Epoch 16, CIFAR-10 Batch 1:  validation loss:0.8000736236572266 , validation accuracy:0.7331998348236084
Epoch 16, CIFAR-10 Batch 2:  validation loss:0.8270074129104614 , validation accuracy:0.7249998450279236
Epoch 16, CIFAR-10 Batch 3:  validation loss:0.833496630191803 , validation accuracy:0.7291998267173767
Epoch 16, CIFAR-10 Batch 4:  validation loss:0.8844289779663086 , validation accuracy:0.7013998627662659
Epoch 16, CIFAR-10 Batch 5:  validation loss:0.8295076489448547 , validation accuracy:0.7249998450279236
Epoch 17, CIFAR-10 Batch 1:  validation loss:0.8638240694999695 , validation accuracy:0.7195998430252075
Epoch 17, CIFAR-10 Batch 2:  validation loss:0.8394083976745605 , validation accuracy:0.7305998206138611
Epoch 17, CIFAR-10 Batch 3:  validation loss:0.8460181355476379 , validation accuracy:0.7247998118400574
Epoch 17, CIFAR-10 Batch 4:  validation loss:0.8338512182235718 , validation accuracy:0.7235998511314392
Epoch 17, CIFAR-10 Batch 5:  validation loss:0.8589770793914795 , validation accuracy:0.716799795627594
Epoch 18, CIFAR-10 Batch 1:  validation loss:0.8291667103767395 , validation accuracy:0.7291997671127319
Epoch 18, CIFAR-10 Batch 2:  validation loss:0.8366613984107971 , validation accuracy:0.7385998368263245
Epoch 18, CIFAR-10 Batch 3:  validation loss:0.877577543258667 , validation accuracy:0.7151998281478882
Epoch 18, CIFAR-10 Batch 4:  validation loss:0.8900598883628845 , validation accuracy:0.7077999114990234
Epoch 18, CIFAR-10 Batch 5:  validation loss:0.8719315528869629 , validation accuracy:0.726399838924408
Epoch 19, CIFAR-10 Batch 1:  validation loss:0.8608243465423584 , validation accuracy:0.7309998869895935
Epoch 19, CIFAR-10 Batch 2:  validation loss:0.8358351588249207 , validation accuracy:0.7371998429298401
Epoch 19, CIFAR-10 Batch 3:  validation loss:0.8631489872932434 , validation accuracy:0.7333998084068298
Epoch 19, CIFAR-10 Batch 4:  validation loss:0.873066246509552 , validation accuracy:0.7191998362541199
Epoch 19, CIFAR-10 Batch 5:  validation loss:0.8625390529632568 , validation accuracy:0.7251999378204346
Epoch 20, CIFAR-10 Batch 1:  validation loss:0.8595708012580872 , validation accuracy:0.7267998456954956
Epoch 20, CIFAR-10 Batch 2:  validation loss:0.869758129119873 , validation accuracy:0.7307998538017273
Epoch 20, CIFAR-10 Batch 3:  validation loss:0.8826970458030701 , validation accuracy:0.7245998382568359
Epoch 20, CIFAR-10 Batch 4:  validation loss:0.8830872774124146 , validation accuracy:0.7325998544692993
Epoch 20, CIFAR-10 Batch 5:  validation loss:0.8789580464363098 , validation accuracy:0.7201998233795166
Epoch 21, CIFAR-10 Batch 1:  validation loss:0.8935134410858154 , validation accuracy:0.7235998511314392
Epoch 21, CIFAR-10 Batch 2:  validation loss:0.8720756769180298 , validation accuracy:0.7321999073028564
Epoch 21, CIFAR-10 Batch 3:  validation loss:0.8928032517433167 , validation accuracy:0.7297998666763306
Epoch 21, CIFAR-10 Batch 4:  validation loss:0.884514331817627 , validation accuracy:0.7295998334884644
Epoch 21, CIFAR-10 Batch 5:  validation loss:0.88665771484375 , validation accuracy:0.7245998382568359
Epoch 22, CIFAR-10 Batch 1:  validation loss:0.9178175330162048 , validation accuracy:0.7267998456954956
Epoch 22, CIFAR-10 Batch 2:  validation loss:0.9234578013420105 , validation accuracy:0.7301998138427734
Epoch 22, CIFAR-10 Batch 3:  validation loss:0.9045707583427429 , validation accuracy:0.7239999175071716
Epoch 22, CIFAR-10 Batch 4:  validation loss:0.8827548027038574 , validation accuracy:0.7219998240470886
Epoch 22, CIFAR-10 Batch 5:  validation loss:0.9213616847991943 , validation accuracy:0.7319997549057007
Epoch 23, CIFAR-10 Batch 1:  validation loss:0.9308722019195557 , validation accuracy:0.7235998511314392
Epoch 23, CIFAR-10 Batch 2:  validation loss:0.9013186693191528 , validation accuracy:0.7333998680114746
Epoch 23, CIFAR-10 Batch 3:  validation loss:0.9191300868988037 , validation accuracy:0.7253998517990112
Epoch 23, CIFAR-10 Batch 4:  validation loss:0.9096567630767822 , validation accuracy:0.7259999513626099
Epoch 23, CIFAR-10 Batch 5:  validation loss:0.9079903364181519 , validation accuracy:0.7309998869895935
Epoch 24, CIFAR-10 Batch 1:  validation loss:0.9496055841445923 , validation accuracy:0.7277998328208923
Epoch 24, CIFAR-10 Batch 2:  validation loss:0.8858141899108887 , validation accuracy:0.7271998524665833
Epoch 24, CIFAR-10 Batch 3:  validation loss:0.9564067721366882 , validation accuracy:0.7361998558044434
Epoch 24, CIFAR-10 Batch 4:  validation loss:0.93292236328125 , validation accuracy:0.720599889755249
Epoch 24, CIFAR-10 Batch 5:  validation loss:0.9244285225868225 , validation accuracy:0.7275998592376709
Epoch 25, CIFAR-10 Batch 1:  validation loss:0.9536893963813782 , validation accuracy:0.7343997955322266
Epoch 25, CIFAR-10 Batch 2:  validation loss:0.9423425197601318 , validation accuracy:0.7199998497962952
Epoch 25, CIFAR-10 Batch 3:  validation loss:0.9411725997924805 , validation accuracy:0.7305998206138611
Epoch 25, CIFAR-10 Batch 4:  validation loss:0.9571048021316528 , validation accuracy:0.7195999026298523
Epoch 25, CIFAR-10 Batch 5:  validation loss:0.9453437328338623 , validation accuracy:0.7317997813224792
Epoch 26, CIFAR-10 Batch 1:  validation loss:0.9997887015342712 , validation accuracy:0.7203998565673828
Epoch 26, CIFAR-10 Batch 2:  validation loss:0.9813229441642761 , validation accuracy:0.721599817276001
Epoch 26, CIFAR-10 Batch 3:  validation loss:0.9962852001190186 , validation accuracy:0.7293998599052429
Epoch 26, CIFAR-10 Batch 4:  validation loss:1.009236216545105 , validation accuracy:0.7225998640060425
Epoch 26, CIFAR-10 Batch 5:  validation loss:1.0070751905441284 , validation accuracy:0.7217998504638672
Epoch 27, CIFAR-10 Batch 1:  validation loss:0.984862208366394 , validation accuracy:0.7259998321533203
Epoch 27, CIFAR-10 Batch 2:  validation loss:0.9731891751289368 , validation accuracy:0.7203998565673828
Epoch 27, CIFAR-10 Batch 3:  validation loss:1.0334815979003906 , validation accuracy:0.7251998782157898
Epoch 27, CIFAR-10 Batch 4:  validation loss:1.0356489419937134 , validation accuracy:0.721599817276001
Epoch 27, CIFAR-10 Batch 5:  validation loss:0.9843260645866394 , validation accuracy:0.7263998985290527
Epoch 28, CIFAR-10 Batch 1:  validation loss:1.0438811779022217 , validation accuracy:0.7261998653411865
Epoch 28, CIFAR-10 Batch 2:  validation loss:1.053825855255127 , validation accuracy:0.7213999032974243
Epoch 28, CIFAR-10 Batch 3:  validation loss:1.041446566581726 , validation accuracy:0.7359998226165771
Epoch 28, CIFAR-10 Batch 4:  validation loss:1.0127724409103394 , validation accuracy:0.7279998064041138
Epoch 28, CIFAR-10 Batch 5:  validation loss:1.0473928451538086 , validation accuracy:0.7275997996330261
Epoch 29, CIFAR-10 Batch 1:  validation loss:1.0704768896102905 , validation accuracy:0.7171999216079712
Epoch 29, CIFAR-10 Batch 2:  validation loss:1.0070323944091797 , validation accuracy:0.7253998517990112
Epoch 29, CIFAR-10 Batch 3:  validation loss:1.0310828685760498 , validation accuracy:0.7355998158454895
Epoch 29, CIFAR-10 Batch 4:  validation loss:1.0353294610977173 , validation accuracy:0.7267998456954956
Epoch 29, CIFAR-10 Batch 5:  validation loss:1.013309121131897 , validation accuracy:0.7311998605728149
Epoch 30, CIFAR-10 Batch 1:  validation loss:1.053547978401184 , validation accuracy:0.7309998273849487
Epoch 30, CIFAR-10 Batch 2:  validation loss:1.0456527471542358 , validation accuracy:0.7253998517990112
Epoch 30, CIFAR-10 Batch 3:  validation loss:1.1463347673416138 , validation accuracy:0.7225998640060425
Epoch 30, CIFAR-10 Batch 4:  validation loss:1.0680477619171143 , validation accuracy:0.7233998775482178
Epoch 30, CIFAR-10 Batch 5:  validation loss:1.1396070718765259 , validation accuracy:0.7199998497962952

Checkpoint

The model has been saved to disk.

Test Model

Test your model against the test dataset. This will be your final accuracy. You should have an accuracy greater than 50%. If you don't, keep tweaking the model architecture and parameters.


In [19]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import pickle
import helper
import random

# Set batch size if not already set
try:
    if batch_size:
        pass
except NameError:
    batch_size = 64

save_model_path = './image_classification'
n_samples = 4
top_n_predictions = 3

def test_model():
    """
    Test the saved model against the test dataset
    """

    test_features, test_labels = pickle.load(open('preprocess_test.p', mode='rb'))
    loaded_graph = tf.Graph()

    with tf.Session(graph=loaded_graph) as sess:
        # Load model
        loader = tf.train.import_meta_graph(save_model_path + '.meta')
        loader.restore(sess, save_model_path)

        # Get Tensors from loaded model
        loaded_x = loaded_graph.get_tensor_by_name('x:0')
        loaded_y = loaded_graph.get_tensor_by_name('y:0')
        loaded_keep_prob = loaded_graph.get_tensor_by_name('keep_prob:0')
        loaded_logits = loaded_graph.get_tensor_by_name('logits:0')
        loaded_acc = loaded_graph.get_tensor_by_name('accuracy:0')
        
        # Get accuracy in batches for memory limitations
        test_batch_acc_total = 0
        test_batch_count = 0
        
        for test_feature_batch, test_label_batch in helper.batch_features_labels(test_features, test_labels, batch_size):
            test_batch_acc_total += sess.run(
                loaded_acc,
                feed_dict={loaded_x: test_feature_batch, loaded_y: test_label_batch, loaded_keep_prob: 1.0})
            test_batch_count += 1

        print('Testing Accuracy: {}\n'.format(test_batch_acc_total/test_batch_count))

        # Print Random Samples
        random_test_features, random_test_labels = tuple(zip(*random.sample(list(zip(test_features, test_labels)), n_samples)))
        random_test_predictions = sess.run(
            tf.nn.top_k(tf.nn.softmax(loaded_logits), top_n_predictions),
            feed_dict={loaded_x: random_test_features, loaded_y: random_test_labels, loaded_keep_prob: 1.0})
        helper.display_image_predictions(random_test_features, random_test_labels, random_test_predictions)


test_model()


Testing Accuracy: 0.7217167721518988

Why 50-80% Accuracy?

You might be wondering why you can't get an accuracy any higher. First things first, 50% isn't bad for a simple CNN. Pure guessing would get you 10% accuracy. However, you might notice people are getting scores well above 80%. That's because we haven't taught you all there is to know about neural networks. We still need to cover a few more techniques.

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_image_classification.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.