In [1]:
import tensorflow as tf
In [2]:
g = tf.Graph()
In [3]:
with g.as_default():
X = tf.placeholder(tf.float32, [4, 2], name='X')
Y = tf.placeholder(tf.float32, [4, 1], name='Y')
W1 = tf.Variable(tf.random_uniform([2,2], -1, 1), name='w1')
b1 = tf.Variable(tf.zeros([2]), name='b1')
W2 = tf.Variable(tf.random_uniform([2, 1], -1, 1), name='w2')
b2 = tf.Variable(tf.zeros([1]), name='b2')
layer_one = tf.sigmoid(tf.matmul(X, W1) + b1)
pred = tf.sigmoid(tf.matmul(layer_one, W2) + b2)
cost = tf.reduce_mean(((Y * tf.log(pred)) + ((1 - Y) * tf.log(1.0 - pred))) * -1)
train_step = tf.train.GradientDescentOptimizer(.01).minimize(cost)
init = tf.initialize_all_variables()
In [4]:
sess = tf.InteractiveSession(graph=g)
In [5]:
sess.run(init)
In [6]:
import numpy as np
In [7]:
data = {X: np.array([[0,0], [0,1], [1, 0], [1,1]]).reshape(4, 2), Y:np.array([False, True, True, False]).reshape(4, 1)}
In [8]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [9]:
print(sess.run(cost, feed_dict=data))
In [10]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [11]:
print(sess.run(cost, feed_dict=data))
In [12]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [13]:
print(1-sess.run(cost, feed_dict=data))
In [14]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [15]:
print(1-sess.run(cost, feed_dict=data))
In [16]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [17]:
print(1-sess.run(cost, feed_dict=data))
In [18]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [19]:
print(1-sess.run(cost, feed_dict=data))
In [20]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [21]:
print(1-sess.run(cost, feed_dict=data))
In [22]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [23]:
print(1-sess.run(cost, feed_dict=data))
In [24]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [25]:
print(1-sess.run(cost, feed_dict=data))
In [26]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [27]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [28]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [29]:
print(1-sess.run(cost, feed_dict=data))
In [30]:
for i in range(10000):
sess.run(train_step, feed_dict=data)
In [31]:
print(1-sess.run(cost, feed_dict=data))
In [32]:
for i in range(50000):
sess.run(train_step, feed_dict=data)
In [33]:
print(1-sess.run(cost, feed_dict=data))
In [34]:
for i in range(50000):
sess.run(train_step, feed_dict=data)
In [35]:
print(1-sess.run(cost, feed_dict=data))
In [36]:
for i in range(50000):
sess.run(train_step, feed_dict=data)
In [37]:
print(1-sess.run(cost, feed_dict=data))
In [38]:
print(sess.run(W1))
In [39]:
for i in range(50000):
sess.run(train_step, feed_dict=data)
In [40]:
print(sess.run(W1))
In [41]:
print(1-sess.run(cost, feed_dict=data))
In [42]:
%notebook -e example.ipynb