Due: 1/12/2016
In the notebook:
In [1]:
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import seaborn
seaborn.set()
matplotlib.rcParams['figure.figsize'] = (15, 8)
import numpy as np
import pandas as pd
In [2]:
data = pd.read_csv("../data/4xy5-26gy.csv", parse_dates=['date'], index_col=['date'])
In [3]:
data.head()
Out[3]:
In [4]:
data['datetime'] = data.index.copy()
In [5]:
data.head()
Out[5]:
In [6]:
data['year'] = data['datetime'].apply(lambda x: x.year)
In [7]:
data.head()
Out[7]:
In [8]:
data = data[data['year'] == 2015]
In [9]:
data = data.drop('year',1)
In [10]:
data['date'] = data['datetime'].apply(lambda x: x.date())
In [11]:
data.head()
Out[11]:
In [12]:
data['hour'] = data['datetime'].apply(lambda x: x.time().hour)
In [13]:
data.head()
Out[13]:
In [14]:
date_hour_data = data.groupby(['date','hour']).sum()
In [15]:
date_hour_data.head()
Out[15]:
In [16]:
hour_data = data.groupby('hour').sum()
In [17]:
ax = hour_data.plot(kind='bar',title='Rides/Hour', width=0.8)
ax.set_ylabel("Bicycle counts")
Out[17]:
In [18]:
hour_mean = data.groupby('hour').mean()
In [19]:
hour_mean
Out[19]:
In [20]:
hour_mean.sort('fremont_bridge_nb', ascending=False).head(5)
Out[20]:
In [21]:
hour_mean.sort('fremont_bridge_sb', ascending=False).head(5)
Out[21]: