In [69]:
xLen = len(X_train_scaled)
tSize = [.1, .2, .3, .4, .5]
train_sizes, train_scores, valid_scores = learning_curve(SVR(), X_train_scaled, y_train, train_sizes = tSize, n_jobs = -1, verbose = 3)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
valid_scores_mean = np.mean(valid_scores, axis=1)
valid_scores_std = np.std(valid_scores, axis=1)
plt.grid()
plt.title("Validation Curve - SVR")
plt.fill_between(tSize, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="darkorange")
plt.fill_between(tSize, valid_scores_mean - valid_scores_std,
valid_scores_mean + valid_scores_std, alpha=0.1, color="navy")
plt.plot(tSize, train_scores_mean, 'o-', color="darkorange",
label="Training score")
plt.plot(tSize, valid_scores_mean, 'o-', color="navy",
label="Cross-validation score")
plt.legend(loc="best")
plt.show
Out[69]: