In [1]:
from __future__ import division
from IPython.display import display
from matplotlib import pyplot as plt
%matplotlib inline
import numpy as np
import pandas as pd
import random, sys, os, re
from sknn.mlp import Classifier, Layer
from sklearn.cross_validation import StratifiedKFold
from sklearn.grid_search import RandomizedSearchCV, GridSearchCV
from sklearn.cross_validation import cross_val_predict, permutation_test_score
In [22]:
SEED = 97
scale = True
minmax = False
norm = False
nointercept = True
engineering = True
N_CLASSES = 2
submission_filename = "../submissions/submission_scikit_nn.csv"
In [3]:
from load_blood_data import load_blood_data
y_train, X_train = load_blood_data(train=True, SEED = SEED,
scale = scale,
minmax = minmax,
norm = norm,
nointercept = nointercept,
engineering = engineering)
In [4]:
StatifiedCV = StratifiedKFold(y = y_train,
n_folds = 10,
shuffle = True,
random_state = SEED)
In [15]:
%%time
random.seed(SEED)
clf_layers = [
Layer(type = 'Rectifier', name = 'hidden',
units = 200,
weight_decay = None,
pieces = None,
dropout = None),
Layer(type = 'Softmax', name = 'output')
]
clf = Classifier(layers = clf_layers,
learning_rate = 0.01,
learning_rule = 'momentum',
learning_momentum = 0.9,
loss_type = u'mse',
mutator = None, # data augmentation function
regularize = None,
weight_decay = None,
dropout_rate = None,
batch_size = 25,
valid_size = 0.1,
valid_set = None,
n_stable = 10, # early stopping after ...
f_stable = 0.001, # validation error change threshold
n_iter = 100, # max epochs
random_state = SEED,
debug = False,
verbose = True)
# param_grid = dict(learning_rate = [0.0001, 0.001, 0.003, 0.01],
# learning_rule = ['momentum', 'nesterov'],
# batch_size = [1, 10, 100],
# hidden__units = [10, 100, 500, 750],
# hidden__type = ['Rectifier', 'Sigmoid', 'Tanh'])
# grid_clf = GridSearchCV(estimator = clf,
# param_grid = param_grid,
# n_jobs = -1,
# cv = StatifiedCV)
# grid_clf.fit(X_train.values.astype(np.float32), y_train)
# print("clf_params = {}".format(grid_clf.best_params_))
# print("score: {}".format(grid_clf.best_score_))
# clf = grid_clf.best_estimator_
clf_params = {'learning_rate': 0.01,
'learning_rule': 'nesterov',
'hidden__type': 'Rectifier',
'batch_size': 10,
'hidden__units': 100,
'valid_size': None,
'valid_set': None}
clf.set_params(**clf_params)
clf.fit(X_train.values.astype(np.float32), y_train)
In [18]:
# from sklearn_utilities import GridSearchHeatmap
# GridSearchHeatmap(grid_clf, y_key='learning_rate', x_key='n_estimators')
# from sklearn_utilities import plot_validation_curves
# plot_validation_curves(grid_clf, param_grid, X_train, y_train, ylim = (0.0, 1.05))
In [16]:
%%time
try:
from sklearn_utilities import plot_learning_curve
except:
import imp, os
util = imp.load_source('sklearn_utilities', os.path.expanduser('~/Dropbox/Python/sklearn_utilities.py'))
from sklearn_utilities import plot_learning_curve
plot_learning_curve(estimator = clf,
title = 'Learning Curves',
X = X_train.values.astype(np.float32),
y = y_train,
ylim = (0.0, 1.10),
cv = StatifiedCV,
train_sizes = np.linspace(.1, 1.0, 5),
n_jobs = -1)
plt.show()
In [17]:
%%time
train_preds = cross_val_predict(estimator = clf,
X = X_train.values.astype(np.float32),
y = y_train,
cv = StatifiedCV,
n_jobs = -1,
verbose = 0,
fit_params = None,
pre_dispatch = '2*n_jobs')
y_true, y_pred = y_train, train_preds
In [18]:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred, labels=None)
print cm
try:
from sklearn_utilities import plot_confusion_matrix
except:
import imp, os
util = imp.load_source('sklearn_utilities', os.path.expanduser('~/Dropbox/Python/sklearn_utilities.py'))
from sklearn_utilities import plot_confusion_matrix
plot_confusion_matrix(cm, ['Did not Donate','Donated'])
accuracy = round(np.trace(cm)/float(np.sum(cm)),4)
misclass = 1 - accuracy
print("Accuracy {}, mis-class rate {}".format(accuracy,misclass))
In [19]:
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import log_loss
from sklearn.metrics import f1_score
fpr, tpr, thresholds = roc_curve(y_true, y_pred, pos_label=None)
plt.figure(figsize=(10,6))
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr)
AUC = roc_auc_score(y_true, y_pred, average='macro')
plt.text(x=0.6,y=0.4,s="AUC {:.4f}"\
.format(AUC),
fontsize=16)
plt.text(x=0.6,y=0.3,s="accuracy {:.2f}%"\
.format(accuracy*100),
fontsize=16)
logloss = log_loss(y_true, y_pred)
plt.text(x=0.6,y=0.2,s="LogLoss {:.4f}"\
.format(logloss),
fontsize=16)
f1 = f1_score(y_true, y_pred)
plt.text(x=0.6,y=0.1,s="f1 {:.4f}"\
.format(f1),
fontsize=16)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.show()
In [20]:
%%time
score, permutation_scores, pvalue = permutation_test_score(estimator = clf,
X = X_train.values.astype(np.float32),
y = y_train,
cv = StatifiedCV,
labels = None,
random_state = SEED,
verbose = 0,
n_permutations = 100,
scoring = None,
n_jobs = -1)
# find mean and stdev of the scores
from scipy.stats import norm
mu, std = norm.fit(permutation_scores)
plt.figure(figsize=(20,8))
plt.hist(permutation_scores, 20, label='Permutation scores')
ylim = plt.ylim()
plt.plot(2 * [score], ylim, '--g', linewidth=3,
label='Classification Score (pvalue {:.4f})'.format(pvalue))
plt.plot(2 * [1. / N_CLASSES], ylim, 'r', linewidth=7, label='Luck')
plt.ylim(ylim)
plt.title('mu={:.4f}, std={:.4f}'.format(mu,std), fontsize=20)
plt.legend(loc='center',fontsize=16)
plt.xlabel('Score')
plt.show()
In [23]:
# format for scores.csv file
import re
algo = re.search(r"submission_(.*?)\.csv", submission_filename).group(1)
print("{: <26} , , {:.4f} , {:.4f} , {:.4f} , {:.4f} , {:.4f} , {:.4f}"\
.format(algo,accuracy,logloss,AUC,f1,mu,std))
In [24]:
# load the R extension
%load_ext rpy2.ipython
# see http://ipython.readthedocs.org/en/stable/config/extensions/index.html?highlight=rmagic
# see http://rpy.sourceforge.net/rpy2/doc-2.4/html/interactive.html#module-rpy2.ipython.rmagic
In [25]:
# Import python variables into R
%R -i accuracy,logloss,AUC,f1,mu,std
In [26]:
%%R
# read in the scores.csv file and perform a linear regression with it using this process's variables
score_data = read.csv('../input/scores.csv')
lm.fit = lm(leaderboard_score ~ accuracy + logloss + AUC + f1 + mu + std,
data = score_data,
na.action = na.omit)
slm.fit = step(lm.fit, direction = "both", trace=0)
predicted_leaderboard_score = predict(object = slm.fit,
newdata = data.frame(accuracy,logloss,AUC,f1,mu,std),
interval = "prediction", level = 0.99)
print(round(predicted_leaderboard_score,4))
In [27]:
clf.set_params(**clf_params)
clf.fit(X_train.values.astype(np.float32), y_train)
Out[27]:
In [28]:
from load_blood_data import load_blood_data
X_test, IDs = load_blood_data(train=False, SEED = SEED,
scale = scale,
minmax = minmax,
norm = norm,
nointercept = nointercept,
engineering = engineering)
In [30]:
y_pred = clf.predict(X_test.values.astype(np.float32)).ravel()
print(y_pred[:10])
try:
y_pred_probs = clf.predict_proba(X_test.values.astype(np.float32))
print(y_pred_probs[:10])
donate_probs = [prob[1] for prob in y_pred_probs]
except Exception,e:
print(e)
donate_probs = [0.65 if x>0 else 1-0.65 for x in y_pred]
print(donate_probs[:10])
In [31]:
assert len(IDs)==len(donate_probs)
f = open(submission_filename, "w")
f.write(",Made Donation in March 2007\n")
for ID, prob in zip(IDs, donate_probs):
f.write("{},{}\n".format(ID,prob))
f.close()
In [ ]: