In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style("white")
sns.set(style="ticks")
from matplotlib import rc
rc('text', usetex=True)
from scipy.stats import norm
from scipy import stats
import statsmodels.api as sm
# sns.despine()
import csv
import ast
import random
import numpy as np
In [63]:
# import itertools
# motiflist = []
# for key in itertools.product(range(2),repeat = 5):
# mod_key = str(key).strip(" ,(),','").replace(", ", "")
# if len(motiflist) > 0:
# if len(mod_key) == len(motiflist[-1]):
# for keys_so_far in range(len(motiflist)):
# if len(mod_key) == len(motiflist[keys_so_far]):
# if mod_key.count('1') < motiflist[keys_so_far].count('1'):
# motiflist.insert(keys_so_far,mod_key)
# break
# else:
# motiflist.append(mod_key)
# else:
# motiflist.append(mod_key)
# else:
# motiflist.append(mod_key)
motiflist = ['10000','00001']
In [2]:
# biaslist = [0.0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0]
# biaslist = [0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0]
# biaslist = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]
# biaslist = [0.5,0.8,0.9,1.0]
biaslist = [0.9]
# numSamples = 50
# numSamples = 150
equil_start = 1000
numTrials = 2
numRounds = 40000
In [202]:
import csv
import ast
import random
import numpy as np
datalist = []
parameterlist = []
motif_mean = []
motif_ci = []
cells_mean = []
cells_ci = []
word_list = []
for motif in range(len(motiflist)):
datalist.append([])
parameterlist.append([])
motif_mean.append([])
motif_ci.append([])
cells_mean.append([])
cells_ci.append([])
word_list.append([])
for bias in range(len(biaslist)):
datalist[motif].append([])
parameterlist[motif].append([])
motif_mean[motif].append([])
motif_ci[motif].append([])
cells_mean[motif].append([])
cells_ci[motif].append([])
word_list[motif].append([])
if biaslist[bias]<0.5:
temp_file = "EquilibriumDataFinder_sampler_validitycheck_start1000_samples"+str(numSamples)+"_MotifSimulation_NewLeaf_Test1_MotifData_motif"+motiflist[motif]+"_len7_bias"+str(biaslist[bias])+"_elong0.05_50trials_numRound7000.csv"
else:
temp_file = "EquilibriumDataFinder_sampler_validitycheck_start1000_samples"+str(numSamples)+"_MotifSimulation_NewLeaf_Test1_MotifData_motif"+motiflist[motif]+"_len7_bias"+str(biaslist[bias])+"_elong0.05_50trials_numRound7000.csv"
csvFile = []
with open(temp_file) as f:
handle = csv.reader(f)
line_counter = 0
for line in handle:
words = []
for word in line:
words.append(ast.literal_eval(word))
if line_counter == 0:
parameterlist[motif][bias] = words
print words
elif line_counter == 2:
if motif == 5:
print words
motif_mean[motif][bias].append(words[0])
motif_ci[motif][bias].append(1.96*words[3])
elif line_counter == 4:
cells_mean[motif][bias].append(words[0])
cells_ci[motif][bias].append(1.96*words[3])
word_list[motif][bias].append(words)
line_counter += 1
f.close()
In [3]:
motiflist = ['10000']
# biaslist = [0.5,0.8,0.9,1.0]
biaslist = [0.9]
In [14]:
single_set_10000motif = []
single_set_01111motif = []
single_set_cell = []
single_set_strands = []
for s in range(3):
if s == 0:
temp_file = "MotifCompeteSimulation_NewLeaf_Compete_Test1_MotifData_motif'10000'|'01111'_len7_bias0.9|0.1_elong0.05_50trials_numRound15000_verificationcopy.csv"
with open(temp_file) as f:
handle = csv.reader(f)
line_counter = 0
for line in handle:
if line_counter in range(1,2*5+1,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_10000motif.append(words)
elif line_counter in range(2,2*5+2,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_01111motif.append(words)
line_counter += 1
elif s == 1:
temp_file = "MotifCompeteSimulation_RobustIC_halfeach_MotifData_motif'10000'|'01111'_len7_bias0.9|0.1_elong0.05_2trials_numRound1500.csv"
with open(temp_file) as f:
handle = csv.reader(f)
line_counter = 0
for line in handle:
if line_counter in range(1,2*5+1,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_10000motif.append(words)
elif line_counter in range(2,2*5+2,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_01111motif.append(words)
line_counter += 1
elif s == 2:
temp_file = "MotifCompeteSimulation_RobustIC_all01111_MotifData_motif'10000'|'01111'_len7_bias0.9|0.1_elong0.05_2trials_numRound1500.csv"
with open(temp_file) as f:
handle = csv.reader(f)
line_counter = 0
for line in handle:
if line_counter in range(1,2*5+1,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_10000motif.append(words)
elif line_counter in range(2,2*5+2,5):
words = []
for word in line:
words.append(ast.literal_eval(word))
single_set_01111motif.append(words)
line_counter += 1
In [15]:
len(single_set_10000motif)
len(single_set_01111motif)
Out[15]:
In [134]:
window_lengths = []
for i in range(1,7000-1000+1):
if (7000-1000) % i == 0:
window_lengths.append(i)
means = []
print window_lengths
for window_length in range(len(window_lengths)):
means.append([])
possible_windows = range(1000,7000+1,window_lengths[window_length])
for window in possible_windows:
print window, window_length
means[window_length].append(np.mean(single_set_motif[0][window:window+window_lengths[window_length]]))
In [138]:
reoriented_means = []
reoriented_lengths = []
for window_length in range(len(window_lengths)):
for item in means[window_length]:
reoriented_means.append(item)
reoriented_lengths.append(window_lengths[window_length])
In [14]:
import math
In [17]:
means = []
# stderr = []
for trial in range(6):
means.append(np.mean(single_set_motif[0][0][trial][1000:]))
stderr = 1.96*math.sqrt(np.var(means)/len(means))
In [19]:
print stderr
print np.mean(means)
In [90]:
plt.figure()
for trial in range(14):
plt.plot(single_set_motif[0][0][trial][1000:1200])
In [17]:
start = 0
add = 1500
plt.figure()
plt.plot(single_set_10000motif[0][start:start+add],'r',label='Empty')
plt.plot(single_set_01111motif[0][start:start+add],'r',label='Empty')
plt.plot(single_set_10000motif[1][start:start+add],'r',label='Empty')
plt.plot(single_set_01111motif[1][start:start+add],'r',label='Empty')
plt.plot(single_set_10000motif[2][start:start+add],'b',label='HalfEach')
plt.plot(single_set_01111motif[2][start:start+add],'b',label='HalfEach')
plt.plot(single_set_10000motif[3][start:start+add],'b',label='HalfEach')
plt.plot(single_set_01111motif[3][start:start+add],'b',label='HalfEach')
plt.plot(single_set_10000motif[4][start:start+add],'g',label='All01111')
plt.plot(single_set_01111motif[4][start:start+add],'g',label='All01111')
plt.plot(single_set_10000motif[5][start:start+add],'g',label='All01111')
plt.plot(single_set_01111motif[5][start:start+add],'g',label='All01111')
plt.legend(loc='upper right')
Out[17]:
In [101]:
start = 0
add = 1000
plt.figure()
# plt.plot(single_set_motif[0][0][0][start:start+add],'r',label='Empty')
# plt.plot(single_set_motif[0][0][1][start:start+add],'r')
# plt.plot(single_set_motif[0][0][2][start:start+add],'b',label='All 1')
# plt.plot(single_set_motif[0][0][3][start:start+add],'b')
# plt.plot(single_set_motif[0][0][4][start:start+add],'g',label ='Random w/ Bin(100,0.1) empty')
# plt.plot(single_set_motif[0][0][5][start:start+add],'g')
# plt.plot(single_set_motif[0][0][6][start:start+add],'y',label ='Random w/ Bin(100,0.5) empty')
# plt.plot(single_set_motif[0][0][7][start:start+add],'y')
# plt.plot(single_set_motif[0][0][8][start:start+add],'c',label ='Random w/ Bin(100,0.9) empty')
# plt.plot(single_set_motif[0][0][9][start:start+add],'c')
# plt.plot(single_set_motif[0][0][10][start:start+add],'m',label ='All Motif')
# plt.plot(single_set_motif[0][0][11][start:start+add],'m')
# plt.plot(single_set_motif[0][0][12][start:start+add],color='orange',label ='Half Motif, Half Empty')
# plt.plot(single_set_motif[0][0][13][start:start+add],color='orange')
plt.plot(single_set_motif[0][0][2][start:start+add],color='#e41a1c',label='All 1')
plt.plot(single_set_motif[0][0][3][start:start+add],color='#e41a1c')
plt.plot(single_set_motif[0][0][4][start:start+add],color='#ffff33',label ='Random w/ Bin(100,0.1) empty')
plt.plot(single_set_motif[0][0][5][start:start+add],color='#ffff33')
plt.plot(single_set_motif[0][0][6][start:start+add],color='#a65628',label ='Random w/ Bin(100,0.5) empty')
plt.plot(single_set_motif[0][0][7][start:start+add],color='#a65628')
plt.plot(single_set_motif[0][0][8][start:start+add],color='#ff7f00',label ='Random w/ Bin(100,0.9) empty')
plt.plot(single_set_motif[0][0][9][start:start+add],color='#ff7f00')
plt.plot(single_set_motif[0][0][10][start:start+add],color='#4daf4a',label ='All Motif')
plt.plot(single_set_motif[0][0][11][start:start+add],color='#4daf4a')
plt.plot(single_set_motif[0][0][12][start:start+add],color='#984ea3',label ='Half Motif, Half Empty')
plt.plot(single_set_motif[0][0][13][start:start+add],color='#984ea3')
plt.plot(single_set_motif[0][0][14][start:start+add],color='#f781bf',label ='Half Motif, Half Random')
plt.plot(single_set_motif[0][0][15][start:start+add],color='#f781bf')
plt.plot(single_set_motif[0][0][0][start:start+add],color='#377eb8',label='Empty')
plt.plot(single_set_motif[0][0][1][start:start+add],color='#377eb8')
#e41a1c
#377eb8
#4daf4a
#984ea3
#ff7f00
#ffff33
#a65628
#f781bf
plt.legend(loc='upper right',ncol=2,fontsize=12)
plt.xlabel('Time')
plt.ylabel('Motif Frequency')
Out[101]:
In [111]:
start = 0
add = 1000
plt.figure()
# plt.plot(single_set_motif[0][0][0][start:start+add],'r',label='Empty')
# plt.plot(single_set_motif[0][0][1][start:start+add],'r')
# plt.plot(single_set_motif[0][0][2][start:start+add],'b',label='All 1')
# plt.plot(single_set_motif[0][0][3][start:start+add],'b')
# plt.plot(single_set_motif[0][0][4][start:start+add],'g',label ='Random w/ Bin(100,0.1) empty')
# plt.plot(single_set_motif[0][0][5][start:start+add],'g')
# plt.plot(single_set_motif[0][0][6][start:start+add],'y',label ='Random w/ Bin(100,0.5) empty')
# plt.plot(single_set_motif[0][0][7][start:start+add],'y')
# plt.plot(single_set_motif[0][0][8][start:start+add],'c',label ='Random w/ Bin(100,0.9) empty')
# plt.plot(single_set_motif[0][0][9][start:start+add],'c')
# plt.plot(single_set_motif[0][0][10][start:start+add],'m',label ='All Motif')
# plt.plot(single_set_motif[0][0][11][start:start+add],'m')
# plt.plot(single_set_motif[0][0][12][start:start+add],color='orange',label ='Half Motif, Half Empty')
# plt.plot(single_set_motif[0][0][13][start:start+add],color='orange')
plt.plot(single_set_motif[0][0][2][start:start+add],color='lightgrey',label='All 1')
plt.plot(single_set_motif[0][0][3][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][4][start:start+add],color='lightgrey',label ='Random w/ Bin(100,0.1) empty')
plt.plot(single_set_motif[0][0][5][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][6][start:start+add],color='lightgrey',label ='Random w/ Bin(100,0.5) empty')
plt.plot(single_set_motif[0][0][7][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][8][start:start+add],color='lightgrey',label ='Random w/ Bin(100,0.9) empty')
plt.plot(single_set_motif[0][0][9][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][10][start:start+add],color='lightgrey',label ='All Motif')
plt.plot(single_set_motif[0][0][11][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][12][start:start+add],color='lightgrey',label ='Half Motif, Half Empty')
plt.plot(single_set_motif[0][0][13][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][14][start:start+add],color='lightgrey',label ='Half Motif, Half Random')
plt.plot(single_set_motif[0][0][15][start:start+add],color='lightgrey')
plt.plot(single_set_motif[0][0][0][start:start+add],color='k',label='Empty')
plt.plot(single_set_motif[0][0][1][start:start+add],color='k')
ax = plt.gca()
for tick in ax.xaxis.get_major_ticks():
tick.label.set_fontsize(14)
for tick in ax.yaxis.get_major_ticks():
tick.label.set_fontsize(14)
# plt.legend(loc='upper right',ncol=2,fontsize=12)
plt.xlabel('Time',fontsize=14)
plt.ylabel('Motif Frequency',fontsize=14)
plt.savefig('convergence_initialconditions_motif10000_bias9_fontsize.pdf',rasterized=True)
In [55]:
start = 1000
add = 6000
plt.figure()
plt.plot(range(start,start+add),single_set_motif[0][0][0][start:start+add],'r',label='Empty')
plt.plot(range(start,start+add),single_set_motif[0][0][1][start:start+add],'r')
plt.plot(range(start,start+add),single_set_motif[0][0][2][start:start+add],'b',label='All 1')
plt.plot(range(start,start+add),single_set_motif[0][0][3][start:start+add],'b')
plt.plot(range(start,start+add),single_set_motif[0][0][4][start:start+add],'g',label ='Random 1 (0.9)')
plt.plot(range(start,start+add),single_set_motif[0][0][5][start:start+add],'g')
plt.plot(range(start,start+add),single_set_motif[0][0][6][start:start+add],'y',label ='Random 2 (0.5)')
plt.plot(range(start,start+add),single_set_motif[0][0][7][start:start+add],'y')
plt.plot(range(start,start+add),single_set_motif[0][0][8][start:start+add],'c',label ='Random 3 (0.1)')
plt.plot(range(start,start+add),single_set_motif[0][0][9][start:start+add],'c')
plt.plot(range(start,start+add),single_set_motif[0][0][10][start:start+add],'m',label ='All Motif')
plt.plot(range(start,start+add),single_set_motif[0][0][11][start:start+add],'m')
plt.legend(loc='lower right',ncol=2)
Out[55]:
In [108]:
plt.figure()
for trial in range(6):
plt.plot(single_set_motif[1][0][trial][30000:30200],'r')
plt.plot(single_set_motif[1][0][trial][200:400],"b")
#plt.scatter(range(len(single_set_motif[1][3][trial][1000:])),single_set_motif[1][3][trial][1000:])
# plt.xlim(0,6050)
# plt.ylim(0.010,0.015)
plt.figure()
Out[108]:
In [141]:
plt.figure()
plt.plot(reoriented_lengths,reoriented_means)
plt.xlim(0,6050)
Out[141]:
In [67]:
mean_pair = []
mean_pair2 = []
mean_pair3 = []
for bias in range(len(biaslist)):
mean_pair.append([])
mean_pair2.append([])
mean_pair3.append([])
for trial in range(20):
mean_pair[bias].append([np.mean(single_set_motif[1][bias][trial][1000:16000]),np.mean(single_set_motif[1][bias][trial][25000:40000])])
mean_pair2[bias].append([np.mean(single_set_motif[1][bias][trial][10000:20000]),np.mean(single_set_motif[1][bias][trial][30000:40000])])
mean_pair3[bias].append([np.mean(single_set_motif[1][bias][trial][1000:7000]),np.mean(single_set_motif[1][bias][trial][33000:40000])])
In [78]:
for bias in range(len(biaslist)):
plt.figure()
plt.title(str(biaslist[bias])+' bias')
for trial in range(20):
plt.plot([1,2],mean_pair[bias][trial],label='1000-16000;25000-40000')
for trial in range(20):
plt.plot([3,4],mean_pair2[bias][trial],label='10000-20000;30000-40000')
for trial in range(20):
plt.plot([5,6],mean_pair3[bias][trial],label='1000-7000;33000-40000')
plt.xlim(0.5,6.5)
In [70]:
for bias in range(len(biaslist)):
plt.figure()
plt.title(str(biaslist[bias])+' bias')
plt.errorbar([1,1.5],[np.mean([mean_pair[bias][trial][0] for trial in range(20)]),np.mean([mean_pair[bias][trial][1] for trial in range(20)])],yerr=[np.std([mean_pair[bias][trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair[bias][trial][1] for trial in range(20)])/math.sqrt(20)],label='1000-16000;25000-40000')
# plt.ylim(0.035,0.039)
plt.errorbar([1.1,1.6],[np.mean([mean_pair2[bias][trial][0] for trial in range(20)]),np.mean([mean_pair2[bias][trial][1] for trial in range(20)])],yerr=[np.std([mean_pair2[bias][trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair2[bias][trial][1] for trial in range(20)])/math.sqrt(20)],label='10000-20000;30000-40000')
# plt.ylim(0.035,0.039)
plt.errorbar([1.2,1.7],[np.mean([mean_pair3[bias][trial][0] for trial in range(20)]),np.mean([mean_pair3[bias][trial][1] for trial in range(20)])],yerr=[np.std([mean_pair3[bias][trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair3[bias][trial][1] for trial in range(20)])/math.sqrt(20)],label='1000-7000;33000-40000')
# plt.ylim(0.035,0.039)
plt.xlim(0.9,1.8)
plt.legend()
In [52]:
import math
plt.figure()
for trial in range(20):
plt.plot([1,2],mean_pair[trial])
plt.figure()
for trial in range(20):
plt.plot([1,2],mean_pair2[trial])
plt.figure()
for trial in range(20):
plt.plot([1,2],mean_pair3[trial])
plt.figure()
sns.distplot([mean_pair[trial][0] for trial in range(20)],label='1000-16000',norm_hist=False)
sns.distplot([mean_pair[trial][1] for trial in range(20)],label='25000-40000',norm_hist=False)
plt.legend()
plt.figure()
sns.distplot([mean_pair2[trial][0] for trial in range(20)],label='10000-20000',norm_hist=False)
sns.distplot([mean_pair2[trial][1] for trial in range(20)],label='30000-40000',norm_hist=False)
plt.legend()
plt.figure()
sns.distplot([mean_pair3[trial][0] for trial in range(20)],label='1000-7000',norm_hist=False)
sns.distplot([mean_pair3[trial][1] for trial in range(20)],label='33000-40000',norm_hist=False)
plt.legend()
plt.figure()
plt.errorbar([1,2],[np.mean([mean_pair[trial][0] for trial in range(20)]),np.mean([mean_pair[trial][1] for trial in range(20)])],yerr=[np.std([mean_pair[trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair[trial][1] for trial in range(20)])/math.sqrt(20)])
# plt.ylim(0.035,0.039)
plt.xlim(0.9,2.1)
plt.figure()
plt.errorbar([1,2],[np.mean([mean_pair2[trial][0] for trial in range(20)]),np.mean([mean_pair2[trial][1] for trial in range(20)])],yerr=[np.std([mean_pair2[trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair2[trial][1] for trial in range(20)])/math.sqrt(20)])
# plt.ylim(0.035,0.039)
plt.xlim(0.9,2.1)
plt.figure()
plt.errorbar([1,2],[np.mean([mean_pair3[trial][0] for trial in range(20)]),np.mean([mean_pair3[trial][1] for trial in range(20)])],yerr=[np.std([mean_pair3[trial][0] for trial in range(20)])/math.sqrt(20),np.std([mean_pair3[trial][1] for trial in range(20)])/math.sqrt(20)])
# plt.ylim(0.035,0.039)
plt.xlim(0.9,2.1)
Out[52]:
In [25]:
means2 = []
cell_means2 = []
strands_means2 = []
medians2 = []
cell_medians2 = []
strands_medians2 = []
for trial in range(20):
means2.append([])
cell_means2.append([])
strands_means2.append([])
medians2.append([])
cell_medians2.append([])
strands_medians2.append([])
for window in range(1001,40001,100):
means2[trial].append(np.mean(single_set_motif[trial][1000:window]))
cell_means2[trial].append(np.mean(single_set_cell[trial][1000:window]))
strands_means2[trial].append(np.mean(single_set_strands[trial][1000:window]))
medians2[trial].append(np.median(single_set_motif[trial][1000:window]))
cell_medians2[trial].append(np.median(single_set_cell[trial][1000:window]))
strands_medians2[trial].append(np.median(single_set_strands[trial][1000:window]))
# medians2 = []
# cell_medians2 = []
# strands_medians2 = []
# for trial in range(10):
# medians2.append([])
# cell_medians2.append([])
# strands_medians2.append([])
# for window in range(1001,7001,1):
# medians2[trial].append(np.median(single_set_motif[trial][1000:window]))
# cell_medians2[trial].append(np.median(single_set_cell[trial][1000:window]))
# strands_medians2[trial].append(np.median(single_set_strands[trial][1000:window]))
In [26]:
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),means2[trial])
plt.title('Motif Mean')
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),medians2[trial])
plt.title('Motif Median')
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),cell_means2[trial])
plt.title('Cell Mean')
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),cell_medians2[trial])
plt.title('Cell Median')
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),strands_means2[trial])
plt.title('Strands Mean')
plt.figure()
for trial in range(20):
plt.plot(range(1001,40001,100),strands_medians2[trial])
plt.title('Strands Median')
Out[26]:
In [164]:
motifs_sliding = []
cell_sliding = []
strands_sliding = []
for trial in range(1):
motifs_sliding.append([])
cell_sliding.append([])
strands_sliding.append([])
for window in range(1,6001,1):
motifs_sliding[trial].append(np.mean([single_set_motif[trial][current:current+window] for current in range(1000,7000-window+1)]))
# cell_sliding[trial].append(np.mean(single_set_cell[trial][1000:window]))
# strands_sliding[trial].append(np.mean(single_set_strands[trial][1000:window]))
In [ ]:
plt.figure()
for trial in range(10):
plt.plot(range(1,6001,1),motifs_sliding[trial])
plt.title('Motifs')
plt.figure()
for trial in range(10):
plt.plot(range(1,6001,1),cell_sliding[trial])
plt.title('Cells')
plt.figure()
for trial in range(10):
plt.plot(range(1,6001,1),strands_sliding[trial])
plt.title('Strands')
In [183]:
for motif in range(len(motiflist)):
for bias in range(len(biaslist)):
# for item in range(5,len(word_list[motif][bias])):
for item in [5,6,7]:
# print item
ans = stats.kstest(word_list[motif][bias][item],'norm') # Kolmorgorov-Smirnov Test
# print ans
if ans[1] < 0.05:
print motif, bias, item, ans
In [204]:
for motif in range(len(motiflist)):
for bias in range(len(biaslist)):
# for item in range(5,len(word_list[motif][bias])):
for item in [5,6,7]:
# print item
ans = stats.shapiro(word_list[motif][bias][item]) # Shapiro-Wilk test
# print ans
if ans[1] < 0.05:
print motiflist[motif], biaslist[bias], item, ans
print stats.kstest(word_list[motif][bias][item],'norm')
print stats.anderson(word_list[motif][bias][item],dist='norm')
# plt.figure()
# sm.qqplot(np.array(word_list[motif][bias][item]),dist=norm,fit=True,line='45')
plt.figure()
sns.distplot(word_list[motif][bias][item],kde=True,fit=norm)
In [95]:
# Plotting the Distribution of Means
print len(word_list[0][0][5])
plt.figure()
sns.distplot(word_list[0][0][5],fit=norm,kde=False,norm_hist=False)
plt.figure()
sns.distplot(word_list[0][1][5],fit=norm,kde=False,norm_hist=False)
plt.figure()
sns.distplot(word_list[0][2][5],fit=norm,kde=False,norm_hist=False)
plt.figure()
sns.distplot(word_list[0][3][5],fit=norm,kde=False,norm_hist=False)
Out[95]:
In [72]:
# Plotting Cell Distribution
print word_list[0][0][6]
plt.figure()
sns.distplot(word_list[0][0][6],fit=norm,kde=True,norm_hist=True)
plt.figure()
sns.distplot(word_list[0][1][6],fit=norm,kde=True,norm_hist=False)
plt.figure()
sns.distplot(word_list[0][2][6],fit=norm,kde=True,norm_hist=False)
plt.figure()
sns.distplot(word_list[0][3][6],fit=norm,kde=True,norm_hist=False)
Out[72]:
In [75]:
# Plotting within Sample Distribution for Motifs
print word_list[0][0][8]
plt.figure()
sns.distplot(word_list[0][0][8],bins=10,fit=norm,kde=True,norm_hist=True)
plt.figure()
sns.distplot(word_list[0][0][9],bins=10,fit=norm,kde=True,norm_hist=True)
plt.figure()
sns.distplot(word_list[0][0][10],bins=10,fit=norm,kde=True,norm_hist=True)
plt.figure()
sns.distplot(word_list[0][0][11],bins=10,fit=norm,kde=True,norm_hist=True)
plt.figure()
sns.distplot(word_list[0][0][12],bins=10,fit=norm,kde=True,norm_hist=True)
# sns.distplot(word_list[0][0][11],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][12],bins=10,fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][13],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][14],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][15],bins=10,fit=norm,kde=False,norm_hist=False)
Out[75]:
In [79]:
print word_list[0][0][8+50+1]
plt.figure()
# sns.distplot(word_list[0][0][8+50+1],fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+2],fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+3],fit=norm,kde=False,norm_hist=True)
sns.distplot(word_list[0][0][9],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][10],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][11],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][12],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][13],kde=False,norm_hist=True)
plt.xlim(0.025,0.05)
plt.figure()
sns.distplot(word_list[0][0][5],fit=norm,kde=False,norm_hist=True)
plt.xlim(0.025,0.05)
Out[79]:
In [78]:
print word_list[0][0][8+50+1]
plt.figure()
# sns.distplot(word_list[0][0][8+50+1],fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+2],fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+3],fit=norm,kde=False,norm_hist=True)
sns.distplot(word_list[0][0][8+50+1],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][8+50+2],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][8+50+3],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][8+50+4],kde=False,norm_hist=True)
sns.distplot(word_list[0][0][8+50+5],kde=False,norm_hist=True)
plt.xlim(0.815,0.855)
plt.figure()
sns.distplot(word_list[0][0][6],fit=norm,kde=False,norm_hist=True)
plt.xlim(0.815,0.855)
# plt.hist(word_list[0][0][8+50+1],normed=True)
# plt.hist(word_list[0][0][8+50+2],normed=True)
# plt.hist(word_list[0][0][8+50+3],normed=True)
# plt.hist(word_list[0][0][8+50+4],normed=True)
# plt.hist(word_list[0][0][8+50+5],normed=True)
# plt.hist(word_list[0][0][6],normed=True)
# sns.distplot(word_list[0][0][8+50+1],bins=10,fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+2],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][10],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][11],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][12],bins=10,fit=norm,kde=False,norm_hist=True)
# sns.distplot(word_list[0][0][8+50+6],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][14],bins=10,fit=norm,kde=False,norm_hist=False)
# sns.distplot(word_list[0][0][15],bins=10,fit=norm,kde=False,norm_hist=False)
Out[78]:
In [11]:
# import random
# import numpy as np
# numSamples = 50
# sample_list = []
# for motif in range(len(motiflist)):
# sample_list.append([])
# for bias in range(len(biaslist)):
# sample_list[motif].append([])
# for trial in range(0,numTrials*3,3):
# sample_list[motif][bias].append(np.mean(random.sample(datalist[motif][bias][trial][equil_start:numRounds],numSamples)))
In [5]:
motifcomposition_list = ["All 0","One 1","Two 1","Three 1","Four 1","All 1"]
motifcomposition_indices = []
for count_wanted in range(len(motifcomposition_list)):
motifcomposition_indices.append([])
for motif in motiflist:
if motif.count('1') == count_wanted:
motifcomposition_indices[count_wanted].append(motiflist.index(motif))
In [13]:
len(sample_list[0][0])
In [6]:
import numpy as np
import math
equil_list = []
for motifcomposition in range(len(motifcomposition_list)):
equil_list.append([])
for bias in range(len(biaslist)):
temp_sample_list = []
for index in motifcomposition_indices[motifcomposition]:
temp_sample_list += motif_mean[index][bias]
equil_list[motifcomposition].append([np.mean(temp_sample_list),np.std(temp_sample_list),np.std(temp_sample_list)/math.sqrt(len(temp_sample_list))])
In [8]:
# %matplotlib inline
# import matplotlib.pyplot as plt
# import seaborn as sns
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
sns.set_color_codes()
sns.set_palette(palette=['b','g','r','m','y','c'])
for motifcomposition in range(len(motifcomposition_list)):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(1.96*equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center',fontsize=18)
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel(r"$b$",fontsize=20)
plt.ylabel('Motif Frequency at Steady State',fontsize=18)
current_palette = sns.color_palette()
plt.tick_params(labelsize=18)
# sns.despine()
fig1.savefig("motifcomposition_alldata_nogridticks_usetex_fontsize_allbias_newcaption_ipython_biglist_{}samples.pdf".format(numSamples),rasterized=True,bbox_inches='tight',pad_inches=0.1)
In [21]:
In [35]:
with sns.color_palette(current_palette[1:]):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motifcomposition in range(1,len(motifcomposition_list)):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(1.96*equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper left')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel('Bias')
plt.ylabel('Motif Frequency at Steady State')
# fig1.savefig("motifcomposition_sansallzero_allbias_ipython_biglist_{}samples.pdf".format(numSamples),rasterized=True)
In [9]:
with sns.color_palette(current_palette[1:]):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motifcomposition in range(1,len(motifcomposition_list)-1):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(1.96*equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center',fontsize=18)
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel(r"$b$",fontsize=20)
plt.ylabel('Motif Frequency at Steady State',fontsize=18)
current_palette = sns.color_palette()
plt.tick_params(labelsize=18)
fig1.savefig("motifcomposition_sansall_allbias_usetex_fontsize_nogridticks_newcaption_ipython_biglist_{}samples.pdf".format(numSamples),rasterized=True,bbox_inches='tight',pad_inches=0.1)
In [37]:
print sample_list[0][0]
In [53]:
pooled_equil_list = []
for motifcomposition in range(len(motifcomposition_list)):
pooled_equil_list.append([])
for bias in range(len(biaslist)):
temp_mean = np.mean([np.mean(motif_mean[index][bias]) for index in motifcomposition_indices[motifcomposition]])
temp_std = math.sqrt(sum([len(motif_mean[index][bias])*np.var(motif_mean[index][bias]) for index in motifcomposition_indices[motifcomposition]]) / sum([len(motif_mean[index][bias])-1 for index in motifcomposition_indices[motifcomposition]]))
temp_se = 1.96*temp_std*math.sqrt(sum([1/len(motif_mean[index][bias]) for index in motifcomposition_indices[motifcomposition]]))
pooled_equil_list[motifcomposition].append([temp_mean,temp_std,temp_se])
In [41]:
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
sns.set_color_codes()
sns.set_palette(palette=['b','g','r','m','y','c'])
for motifcomposition in range(len(motifcomposition_list)):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(pooled_equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(pooled_equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
current_palette = sns.color_palette()
# fig1.savefig("motifcomposition_alldata_allbias_newcaption_ipython_pooled_{}samples.pdf".format(numSamples),rasterized=True)
In [42]:
with sns.color_palette(current_palette[1:]):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motifcomposition in range(1,len(motifcomposition_list)-1):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(pooled_equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(pooled_equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
# fig1.savefig("motifcomposition_sansall_allbias_newcaption_ipython_pooled_{}samples.pdf".format(numSamples),rasterized=True)÷
In [27]:
naive_equil_list = []
for motifcomposition in range(len(motifcomposition_list)):
naive_equil_list.append([])
for bias in range(len(biaslist)):
temp_mean = np.mean([np.mean(sample_list[index][bias]) for index in motifcomposition_indices[motifcomposition]])
temp_std = np.std([np.mean(sample_list[index][bias]) for index in motifcomposition_indices[motifcomposition]])
temp_se = 1.96*temp_std/math.sqrt(len(motifcomposition_indices[motifcomposition]))
naive_equil_list[motifcomposition].append([temp_mean,temp_std,temp_se])
In [47]:
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
sns.set_color_codes()
sns.set_palette(palette=['b','g','r','m','y','c'])
for motifcomposition in range(len(motifcomposition_list)):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(naive_equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(naive_equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
current_palette = sns.color_palette()
fig1.savefig("motifcomposition_alldata_allbias_newcaption_ipython_naive_{}samples.pdf".format(numSamples),rasterized=True)
In [48]:
with sns.color_palette(current_palette[1:]):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motifcomposition in range(1,len(motifcomposition_list)-1):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(naive_equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(naive_equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='upper center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
fig1.savefig("motifcomposition_sansall_allbias_newcaption_ipython_naive_{}samples.pdf".format(numSamples),rasterized=True)
In [76]:
print motifcomposition_indices[1]
In [10]:
one1_equil_list = []
for motif in range(len(motifcomposition_indices[1])):
one1_equil_list.append([])
for bias in range(len(biaslist)):
one1_equil_list[motif].append([np.mean(motif_mean[motifcomposition_indices[1][motif]][bias]),np.std(motif_mean[motifcomposition_indices[1][motif]][bias]),np.std(motif_mean[motifcomposition_indices[1][motif]][bias])/math.sqrt(numTrials)])
In [67]:
print motifcomposition_indices[1]
motif_mean[5][9]
Out[67]:
In [25]:
with sns.color_palette('Greens_d'):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[1])-1,-1,-1):
# print motif
motif_mean_list = []
motif_ci_list = []
# print motif_mean[motif]
# print motif_ci[motif]
for bias in range(10,len(biaslist)):
motif_mean_list.append(motif_mean[motif+1][bias][0])
motif_ci_list.append(motif_ci[motif+1][bias][0])
# print motif_mean_list
plt.errorbar(biaslist[10:],motif_mean_list,yerr=motif_ci_list,label="{}".format(motiflist[motifcomposition_indices[1][motif]]))
plt.legend(loc='upper left')
# plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
plt.xlim(0.5-0.01,max(biaslist)+0.01)
plt.ylim(0,0.105)
plt.xlabel(r"$b$",fontsize=16)
plt.ylabel('Motif Frequency at Steady State')
fig1.savefig("one1motif_allbias_nogridticks_usetex_chopped_newcaption_ipython_greens_{}samples.pdf".format(numSamples),rasterized=True)
In [29]:
with sns.color_palette('Greens_d'):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[1])-1,-1,-1):
# print motif
motif_mean_list = []
motif_ci_list = []
# print motif_mean[motif]
# print motif_ci[motif]
for bias in range(len(biaslist)):
motif_mean_list.append(motif_mean[motif+1][bias][0])
motif_ci_list.append(motif_ci[motif+1][bias][0])
# print motif_mean_list
plt.errorbar(biaslist,motif_mean_list,yerr=motif_ci_list,label="{}".format(motiflist[motifcomposition_indices[1][motif]]))
plt.legend(loc='upper left')
# plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
plt.xlim(0.5-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
fig1.savefig("one1motif_allbias_nogridticks_newlabel_chopped_newcaption_ipython_greens_{}samples.pdf".format(numSamples),rasterized=True)
In [12]:
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[1])-1,-1,-1):
# print motif
motif_mean_list = []
motif_ci_list = []
# print motif_mean[motif]
# print motif_ci[motif]
for bias in range(10,len(biaslist)):
motif_mean_list.append(motif_mean[motif+1][bias][0])
motif_ci_list.append(motif_ci[motif+1][bias][0])
# print motif_mean_list
plt.errorbar(biaslist[10:],motif_mean_list,yerr=motif_ci_list,label="{}".format(motiflist[motifcomposition_indices[1][motif]]))
plt.legend(loc='lower center',fontsize=18)
# plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
plt.xlim(0.5-0.01,max(biaslist)+0.01)
plt.ylim(0,0.105)
plt.xlabel(r"$b$",fontsize=20)
plt.ylabel('Motif Frequency at Steady State',fontsize=18)
current_palette = sns.color_palette()
plt.tick_params(labelsize=18)
fig1.savefig("one1motif_allbias_nogridticks_usetex_fullcolor_fontsize_plot_chopped_newcaption_ipython_{}samples.pdf".format(numSamples),rasterized=True,bbox_inches='tight',pad_inches=0.1)
In [32]:
two1_equil_list = []
for motif in range(len(motifcomposition_indices[2])):
two1_equil_list.append([])
for bias in range(len(biaslist)):
two1_equil_list[motif].append([np.mean(sample_list[motifcomposition_indices[2][motif]][bias]),np.std(sample_list[motifcomposition_indices[2][motif]][bias]),np.std(sample_list[motifcomposition_indices[2][motif]][bias])/math.sqrt(numTrials)])
In [100]:
In [50]:
with sns.color_palette(sns.cubehelix_palette(10)):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[2])):
motif_mean_list = []
motif_ci_list = []
for bias in range(len(biaslist)):
motif_mean_list.append(two1_equil_list[motif][bias][0])
motif_ci_list.append(1.96*two1_equil_list[motif][bias][2])
plt.errorbar(biaslist,motif_mean_list,yerr=motif_ci_list,label="'{}' motif".format(motiflist[motifcomposition_indices[2][motif]]))
plt.legend(loc='lower center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Motif Frequency at Steady State')
fig1.savefig("two1motif_allbias_newcaption_ipython_cubehelix_{}samples.pdf".format(numSamples),rasterized=True)
In [36]:
four1_equil_list = []
for motif in range(len(motifcomposition_indices[4])):
four1_equil_list.append([])
for bias in range(len(biaslist)):
four1_equil_list[motif].append([np.mean(sample_list[motifcomposition_indices[4][motif]][bias]),np.std(sample_list[motifcomposition_indices[4][motif]][bias]),np.std(sample_list[motifcomposition_indices[4][motif]][bias])/math.sqrt(numTrials)])
In [37]:
with sns.color_palette(sns.dark_palette("yellow")):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[4])):
motif_mean_list = []
motif_ci_list = []
for bias in range(len(biaslist)):
motif_mean_list.append(four1_equil_list[motif][bias][0])
motif_ci_list.append(1.96*four1_equil_list[motif][bias][2])
plt.errorbar(biaslist,motif_mean_list,yerr=motif_ci_list,label="'{}' motif".format(motiflist[motifcomposition_indices[4][motif]]))
plt.legend(loc='upper right')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel('Bias')
plt.ylabel('Motif Frequency at Steady State')
fig1.savefig("four1motif_allbias_ipython_yellows_{}samples.pdf".format(numSamples),rasterized=True)
In [13]:
# numSamples = 50
# cells_sample_list = []
# for motif in range(len(motiflist)):
# cells_sample_list.append([])
# for bias in range(len(biaslist)):
# cells_sample_list[motif].append([])
# for trial in range(2,numTrials*3+2,3):
# cells_sample_list[motif][bias].append(np.mean(random.sample(datalist[motif][bias][trial][equil_start:numRounds],numSamples)))
In [56]:
naive_cells_equil_list = []
for motifcomposition in range(len(motifcomposition_list)):
naive_cells_equil_list.append([])
for bias in range(len(biaslist)):
temp_mean = np.mean([np.mean(cells_sample_list[index][bias]) for index in motifcomposition_indices[motifcomposition]])
temp_std = np.std([np.mean(cells_sample_list[index][bias]) for index in motifcomposition_indices[motifcomposition]])
temp_se = 1.96*temp_std/math.sqrt(len(motifcomposition_indices[motifcomposition]))
naive_cells_equil_list[motifcomposition].append([temp_mean,temp_std,temp_se])
In [63]:
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
sns.set_color_codes()
sns.set_palette(palette=['b','g','r','m','y','c'])
for motifcomposition in range(len(motifcomposition_list)):
motifcomposition_mean_list = []
motifcomposition_ci_list = []
for bias in range(len(biaslist)):
motifcomposition_mean_list.append(naive_cells_equil_list[motifcomposition][bias][0])
motifcomposition_ci_list.append(naive_cells_equil_list[motifcomposition][bias][2])
plt.errorbar(biaslist,motifcomposition_mean_list,yerr=motifcomposition_ci_list,label=motifcomposition_list[motifcomposition])
plt.legend(loc='lower center')
plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel("Bias towards '0' monomer")
plt.ylabel('Frequency of Cells with Motif at Steady State')
current_palette = sns.color_palette()
fig1.savefig("cellscomposition_alldata_allbias_newcaption_ipython_naive_{}samples.pdf".format(numSamples),rasterized=True)
In [70]:
cells_mean
Out[70]:
In [15]:
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[1])-1,-1,-1):
# print motif
cells_mean_list = []
cells_ci_list = []
# print motif_mean[motif]
# print motif_ci[motif]
for bias in range(10,len(biaslist)):
cells_mean_list.append(cells_mean[motif+1][bias][0])
cells_ci_list.append(motif_ci[motif+1][bias][0])
# print motif_mean_list
plt.errorbar(biaslist[10:],cells_mean_list,yerr=cells_ci_list,label="{}".format(motiflist[motifcomposition_indices[1][motif]]))
# plt.legend(loc='upper left')
plt.legend(loc='lower center',fontsize=18)
# plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
plt.xlim(0.5-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.105)
plt.xlabel(r"$b$",fontsize=20)
plt.ylabel('Frequency of Cells with Motif at Steady State',fontsize=18)
current_palette = sns.color_palette()
plt.tick_params(labelsize=18)
fig1.savefig("one1motif_cells_allbias_nogridticks_usetex_fullcolor_fontsize_chopped_newcaption_ipython_{}samples.pdf".format(numSamples),rasterized=True,bbox_inches='tight',pad_inches=0.1)
In [68]:
one1_cells_equil_list = []
for motif in range(len(motifcomposition_indices[1])):
one1_cells_equil_list.append([])
for bias in range(len(biaslist)):
one1_cells_equil_list[motif].append([np.mean(cells_sample_list[motifcomposition_indices[1][motif]][bias]),np.std(cells_sample_list[motifcomposition_indices[1][motif]][bias]),np.std(cells_sample_list[motifcomposition_indices[1][motif]][bias])/math.sqrt(numTrials)])
In [28]:
with sns.color_palette('Greens_d'):
fig1 = plt.figure()
# fig1.set_figwidth(10)
# fig1.set_figheight(5)
for motif in range(len(motifcomposition_indices[1])-1,-1,-1):
motif_mean_list = []
motif_ci_list = []
for bias in range(10,len(biaslist)):
motif_mean_list.append(cells_mean[motif+1][bias][0])
motif_ci_list.append(cells_ci[motif+1][bias][0])
plt.errorbar(biaslist[10:],motif_mean_list,yerr=motif_ci_list,label="{}".format(motiflist[motifcomposition_indices[1][motif]]))
plt.legend(loc='lower left')
# plt.xlim(min(biaslist)-0.01,max(biaslist)+0.01)
plt.xlim(0.5-0.01,max(biaslist)+0.01)
# plt.ylim(0,0.11)
plt.xlabel(r"$b$",fontsize=16)
plt.ylabel('Frequency of Cells with Motif at Steady State')
fig1.savefig("one1motif_allbias_nogridticks_usetex_chopped_newcaption_cells_ipython_greens_{}samples.pdf".format(numSamples),rasterized=True)
In [ ]: