In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code sample to demonstrates how to rank intervals."""
from __future__ import print_function
from ortools.sat.python import cp_model
def RankTasks(model, starts, presences, ranks):
"""This method adds constraints and variables to links tasks and ranks.
This method assumes that all starts are disjoint, meaning that all tasks have
a strictly positive duration, and they appear in the same NoOverlap
constraint.
Args:
model: The CpModel to add the constraints to.
starts: The array of starts variables of all tasks.
presences: The array of presence variables of all tasks.
ranks: The array of rank variables of all tasks.
"""
num_tasks = len(starts)
all_tasks = range(num_tasks)
# Creates precedence variables between pairs of intervals.
precedences = {}
for i in all_tasks:
for j in all_tasks:
if i == j:
precedences[(i, j)] = presences[i]
else:
prec = model.NewBoolVar('%i before %i' % (i, j))
precedences[(i, j)] = prec
model.Add(starts[i] < starts[j]).OnlyEnforceIf(prec)
# Treats optional intervals.
for i in range(num_tasks - 1):
for j in range(i + 1, num_tasks):
tmp_array = [precedences[(i, j)], precedences[(j, i)]]
if presences[i] != 1:
tmp_array.append(presences[i].Not())
# Makes sure that if i is not performed, all precedences are false.
model.AddImplication(presences[i].Not(),
precedences[(i, j)].Not())
model.AddImplication(presences[i].Not(),
precedences[(j, i)].Not())
if presences[j] != 1:
tmp_array.append(presences[j].Not())
# Makes sure that if j is not performed, all precedences are false.
model.AddImplication(presences[j].Not(),
precedences[(i, j)].Not())
model.AddImplication(presences[j].Not(),
precedences[(j, i)].Not())
# The following bool_or will enforce that for any two intervals:
# i precedes j or j precedes i or at least one interval is not
# performed.
model.AddBoolOr(tmp_array)
# Redundant constraint: it propagates early that at most one precedence
# is true.
model.AddImplication(precedences[(i, j)], precedences[(j, i)].Not())
model.AddImplication(precedences[(j, i)], precedences[(i, j)].Not())
# Links precedences and ranks.
for i in all_tasks:
model.Add(ranks[i] == sum(precedences[(j, i)] for j in all_tasks) - 1)
def RankingSampleSat():
"""Ranks tasks in a NoOverlap constraint."""
model = cp_model.CpModel()
horizon = 100
num_tasks = 4
all_tasks = range(num_tasks)
starts = []
ends = []
intervals = []
presences = []
ranks = []
# Creates intervals, half of them are optional.
for t in all_tasks:
start = model.NewIntVar(0, horizon, 'start_%i' % t)
duration = t + 1
end = model.NewIntVar(0, horizon, 'end_%i' % t)
if t < num_tasks // 2:
interval = model.NewIntervalVar(start, duration, end,
'interval_%i' % t)
presence = True
else:
presence = model.NewBoolVar('presence_%i' % t)
interval = model.NewOptionalIntervalVar(start, duration, end,
presence,
'o_interval_%i' % t)
starts.append(start)
ends.append(end)
intervals.append(interval)
presences.append(presence)
# Ranks = -1 if and only if the tasks is not performed.
ranks.append(model.NewIntVar(-1, num_tasks - 1, 'rank_%i' % t))
# Adds NoOverlap constraint.
model.AddNoOverlap(intervals)
# Adds ranking constraint.
RankTasks(model, starts, presences, ranks)
# Adds a constraint on ranks.
model.Add(ranks[0] < ranks[1])
# Creates makespan variable.
makespan = model.NewIntVar(0, horizon, 'makespan')
for t in all_tasks:
if presences[t] == 1:
model.Add(ends[t] <= makespan)
else:
model.Add(ends[t] <= makespan).OnlyEnforceIf(presences[t])
# Minimizes makespan - fixed gain per tasks performed.
# As the fixed cost is less that the duration of the last interval,
# the solver will not perform the last interval.
model.Minimize(2 * makespan - 7 * sum(presences[t] for t in all_tasks))
# Solves the model model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
if status == cp_model.OPTIMAL:
# Prints out the makespan and the start times and ranks of all tasks.
print('Optimal cost: %i' % solver.ObjectiveValue())
print('Makespan: %i' % solver.Value(makespan))
for t in all_tasks:
if solver.Value(presences[t]):
print('Task %i starts at %i with rank %i' %
(t, solver.Value(starts[t]), solver.Value(ranks[t])))
else:
print('Task %i in not performed and ranked at %i' %
(t, solver.Value(ranks[t])))
else:
print('Solver exited with nonoptimal status: %i' % status)
RankingSampleSat()