In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Solves a multiple knapsack problem using the CP-SAT solver."""

# [START import]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from ortools.sat.python import cp_model

# [END import]


# [START data_model]
def create_data_model():
    """Create the data for the example."""
    data = {}
    weights = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36]
    values = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25]
    data['num_items'] = len(weights)
    data['all_items'] = range(data['num_items'])
    data['weights'] = weights
    data['values'] = values
    data['bin_capacities'] = [100, 100, 100, 100, 100]
    data['num_bins'] = len(data['bin_capacities'])
    data['all_bins'] = range(data['num_bins'])
    return data


# [END data_model]


# [START solution_printer]
def print_solutions(data, solver, x):
    """Display the solution."""
    total_weight = 0
    total_value = 0
    for b in data['all_bins']:
        print('Bin', b, '\n')
        bin_weight = 0
        bin_value = 0
        for idx, val in enumerate(data['weights']):
            if solver.Value(x[(idx, b)]) > 0:
                print('Item', idx, '-  Weight:', val, ' Value:',
                      data['values'][idx])
                bin_weight += val
                bin_value += data['values'][idx]
        print('Packed bin weight:', bin_weight)
        print('Packed bin value:', bin_value, '\n')
        total_weight += bin_weight
        total_value += bin_value
    print('Total packed weight:', total_weight)
    print('Total packed value:', total_value)


# [END solution_printer]


# [START data]
data = create_data_model()
# [END data]

# [START model]
model = cp_model.CpModel()
# [END model]

# Main variables.
# [START variables]
x = {}
for idx in data['all_items']:
    for b in data['all_bins']:
        x[(idx, b)] = model.NewIntVar(0, 1, 'x_%i_%i' % (idx, b))
max_value = sum(data['values'])
# value[b] is the value of bin b when packed.
value = [
    model.NewIntVar(0, max_value, 'value_%i' % b) for b in data['all_bins']
]
for b in data['all_bins']:
    model.Add(value[b] == sum(
        x[(i, b)] * data['values'][i] for i in data['all_items']))
# [END variables]

# [START constraints]
# Each item can be in at most one bin.
for idx in data['all_items']:
    model.Add(sum(x[idx, b] for b in data['all_bins']) <= 1)

# The amount packed in each bin cannot exceed its capacity.
for b in data['all_bins']:
    model.Add(
        sum(x[(i, b)] * data['weights'][i]
            for i in data['all_items']) <= data['bin_capacities'][b])
# [END constraints]

# [START objective]
# Maximize total value of packed items.
model.Maximize(sum(value))
# [END objective]

# [START solver]
solver = cp_model.CpSolver()
# [END solver]

# [START solve]
status = solver.Solve(model)
# [END solve]

# [START print_solution]
if status == cp_model.OPTIMAL:
    print_solutions(data, solver, x)
# [END solutions_printer]