In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Solves a binpacking problem using the CP-SAT solver."""
from __future__ import print_function
from ortools.sat.python import cp_model
def BinpackingProblemSat():
"""Solves a bin-packing problem using the CP-SAT solver."""
# Data.
bin_capacity = 100
slack_capacity = 20
num_bins = 5
all_bins = range(num_bins)
items = [(20, 6), (15, 6), (30, 4), (45, 3)]
num_items = len(items)
all_items = range(num_items)
# Model.
model = cp_model.CpModel()
# Main variables.
x = {}
for i in all_items:
num_copies = items[i][1]
for b in all_bins:
x[(i, b)] = model.NewIntVar(0, num_copies, 'x_%i_%i' % (i, b))
# Load variables.
load = [model.NewIntVar(0, bin_capacity, 'load_%i' % b) for b in all_bins]
# Slack variables.
slacks = [model.NewBoolVar('slack_%i' % b) for b in all_bins]
# Links load and x.
for b in all_bins:
model.Add(load[b] == sum(x[(i, b)] * items[i][0] for i in all_items))
# Place all items.
for i in all_items:
model.Add(sum(x[(i, b)] for b in all_bins) == items[i][1])
# Links load and slack through an equivalence relation.
safe_capacity = bin_capacity - slack_capacity
for b in all_bins:
# slack[b] => load[b] <= safe_capacity.
model.Add(load[b] <= safe_capacity).OnlyEnforceIf(slacks[b])
# not(slack[b]) => load[b] > safe_capacity.
model.Add(load[b] > safe_capacity).OnlyEnforceIf(slacks[b].Not())
# Maximize sum of slacks.
model.Maximize(sum(slacks))
# Solves and prints out the solution.
solver = cp_model.CpSolver()
status = solver.Solve(model)
print('Solve status: %s' % solver.StatusName(status))
if status == cp_model.OPTIMAL:
print('Optimal objective value: %i' % solver.ObjectiveValue())
print('Statistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f s' % solver.WallTime())
BinpackingProblemSat()