In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Linear optimization example."""
# [START program]
from __future__ import print_function
# [START import]
from ortools.linear_solver import pywraplp
# [END import]
def LinearProgrammingExample():
"""Linear programming sample."""
# Instantiate a Glop solver, naming it LinearExample.
# [START solver]
solver = pywraplp.Solver('LinearProgrammingExample',
pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)
# [END solver]
# Create the two variables and let them take on any non-negative value.
# [START variables]
x = solver.NumVar(0, solver.infinity(), 'x')
y = solver.NumVar(0, solver.infinity(), 'y')
# [END variables]
# [START constraints]
# Constraint 0: x + 2y <= 14.
constraint0 = solver.Constraint(-solver.infinity(), 14)
constraint0.SetCoefficient(x, 1)
constraint0.SetCoefficient(y, 2)
# Constraint 1: 3x - y >= 0.
constraint1 = solver.Constraint(0, solver.infinity())
constraint1.SetCoefficient(x, 3)
constraint1.SetCoefficient(y, -1)
# Constraint 2: x - y <= 2.
constraint2 = solver.Constraint(-solver.infinity(), 2)
constraint2.SetCoefficient(x, 1)
constraint2.SetCoefficient(y, -1)
# [END constraints]
# [START objective]
# Objective function: 3x + 4y.
objective = solver.Objective()
objective.SetCoefficient(x, 3)
objective.SetCoefficient(y, 4)
objective.SetMaximization()
# [END objective]
# Solve the system.
# [START solve]
solver.Solve()
# [END solve]
# [START print_solution]
opt_solution = 3 * x.solution_value() + 4 * y.solution_value()
print('Number of variables =', solver.NumVariables())
print('Number of constraints =', solver.NumConstraints())
# The value of each variable in the solution.
print('Solution:')
print('x = ', x.solution_value())
print('y = ', y.solution_value())
# The objective value of the solution.
print('Optimal objective value =', opt_solution)
# [END print_solution]
LinearProgrammingExample()
# [END program]