In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Reallocate production to smooth it over years."""
from __future__ import print_function
import collections
from ortools.sat.python import cp_model
# Data
data_0 = [
[107, 107, 107, 0, 0], # pr1
[0, 47, 47, 47, 0], # pr2
[10, 10, 10, 0, 0], # pr3
[0, 55, 55, 55, 55], # pr4
]
data_1 = [
[119444030, 0, 0, 0],
[34585586, 38358559, 31860661, 0],
[19654655, 21798799, 18106106, 0],
[298836792, 0, 0, 0],
[3713428, 4118530, 4107277, 3072018],
[6477273, 7183884, 5358471, 0],
[1485371, 1647412, 1642911, 1228807]
]
data_2 = [
[1194440, 0, 0, 0],
[345855, 383585, 318606, 0],
[196546, 217987, 181061, 0],
[2988367, 0, 0, 0],
[37134, 41185, 41072, 30720],
[64772, 71838, 53584, 0],
[14853, 16474, 16429, 12288]
]
pr = data_0
num_pr = len(pr)
num_years = len(pr[1])
total = sum(pr[p][y] for p in range(num_pr) for y in range(num_years))
avg = total // num_years
# Model
model = cp_model.CpModel()
# Variables
delta = model.NewIntVar(0, total, 'delta')
contributions_per_years = collections.defaultdict(list)
contributions_per_prs = collections.defaultdict(list)
all_contribs = {}
for p, inner_l in enumerate(pr):
for y, item in enumerate(inner_l):
if item != 0:
contrib = model.NewIntVar(0, total, 'r%d c%d' % (p, y))
contributions_per_years[y].append(contrib)
contributions_per_prs[p].append(contrib)
all_contribs[p, y] = contrib
year_var = [
model.NewIntVar(0, total, 'y[%i]' % i) for i in range(num_years)
]
# Constraints
# Maintain year_var.
for y in range(num_years):
model.Add(year_var[y] == sum(contributions_per_years[y]))
# Fixed contributions per pr.
for p in range(num_pr):
model.Add(sum(pr[p]) == sum(contributions_per_prs[p]))
# Link delta with variables.
for y in range(num_years):
model.Add(year_var[y] >= avg - delta)
for y in range(num_years):
model.Add(year_var[y] <= avg + delta)
# Solve and output
model.Minimize(delta)
# Solve model.
solver = cp_model.CpSolver()
status = solver.Solve(model)
# Output solution.
if status == cp_model.OPTIMAL:
print('Data')
print(' - total = ', total)
print(' - year_average = ', avg)
print(' - number of projects = ', num_pr)
print(' - number of years = ', num_years)
print(' - input production')
for p in range(num_pr):
for y in range(num_years):
if pr[p][y] == 0:
print(' ', end='')
else:
print('%10i' % pr[p][y], end='')
print()
print('Solution')
for p in range(num_pr):
for y in range(num_years):
if pr[p][y] == 0:
print(' ', end='')
else:
print('%10i' % solver.Value(all_contribs[p, y]), end='')
print()
for y in range(num_years):
print('%10i' % solver.Value(year_var[y]), end='')
print()