In [ ]:
# -*- coding: utf-8 -*-
"""Scheduling problem with transition time between tasks and transitions costs.

@author: CSLiu2
"""

from __future__ import print_function
from __future__ import absolute_import
from __future__ import division

import argparse
import collections

from ortools.sat.python import cp_model
from google.protobuf import text_format

#----------------------------------------------------------------------------
# Command line arguments.
PARSER = argparse.ArgumentParser()
PARSER.add_argument(
    '--problem_instance', default=0, type=int, help='Problem instance.')
PARSER.add_argument(
    '--output_proto',
    default='',
    help='Output file to write the cp_model proto to.')
PARSER.add_argument('--params', default='', help='Sat solver parameters.')


#----------------------------------------------------------------------------
# Intermediate solution printer
class SolutionPrinter(cp_model.CpSolverSolutionCallback):
  """Print intermediate solutions."""

  def __init__(self, makespan):
    cp_model.CpSolverSolutionCallback.__init__(self)
    self.__solution_count = 0
    self.__makespan = makespan

  def OnSolutionCallback(self):
    print('Solution %i, time = %f s, objective = %i, makespan = %i' %
          (self.__solution_count, self.WallTime(), self.ObjectiveValue(),
           self.Value(self.__makespan)))
    self.__solution_count += 1


"""Solves the scheduling with transitions problem."""

instance = args.problem_instance
parameters = args.params
output_proto = args.output_proto

#----------------------------------------------------------------------------
# Data.
small_jobs = [[[(100, 0, 'R6'), (2, 1, 'R6')]],
              [[(2, 0, 'R3'), (100, 1, 'R3')]],
              [[(100, 0, 'R1'), (16, 1, 'R1')]],
              [[(1, 0, 'R1'), (38, 1, 'R1')]], [[(14, 0, 'R1'), (10, 1,
                                                                 'R1')]],
              [[(16, 0, 'R3'), (17, 1, 'R3')]],
              [[(14, 0, 'R3'), (14, 1, 'R3')]],
              [[(14, 0, 'R3'), (15, 1, 'R3')]],
              [[(14, 0, 'R3'), (13, 1, 'R3')]],
              [[(100, 0, 'R1'), (38, 1, 'R1')]]]

large_jobs = [
    [[(-1, 0, 'R1'), (10, 1, 'R1')]], [[(9, 0, 'R3'),
                                        (22, 1, 'R3')]],
    [[(-1, 0, 'R3'), (13, 1, 'R3')]], [[(-1, 0, 'R3'), (38, 1, 'R3')]],
    [[(-1, 0, 'R3'), (38, 1, 'R3')]], [[(-1, 0, 'R3'), (16, 1, 'R3')]],
    [[(-1, 0, 'R3'), (11, 1, 'R3')]], [[(-1, 0, 'R3'), (13, 1, 'R3')]],
    [[(13, 0, 'R3'), (-1, 1, 'R3')]], [[(13, 0, 'R3'), (-1, 1, 'R3')]],
    [[(-1, 0, 'R3'), (15, 1, 'R3')]], [[(12, 0, 'R1'), (-1, 1, 'R1')]],
    [[(14, 0, 'R1'), (-1, 1, 'R1')]], [[(13, 0, 'R3'), (-1, 1, 'R3')]],
    [[(-1, 0, 'R3'), (15, 1, 'R3')]], [[(14, 0, 'R1'), (-1, 1, 'R1')]],
    [[(13, 0, 'R3'), (-1, 1, 'R3')]], [[(14, 0, 'R3'), (-1, 1, 'R3')]],
    [[(13, 0, 'R1'), (-1, 1, 'R1')]], [[(15, 0, 'R1'), (-1, 1, 'R1')]],
    [[(-1, 0, 'R2'), (16, 1, 'R2')]], [[(-1, 0, 'R2'), (16, 1, 'R2')]],
    [[(-1, 0, 'R5'), (27, 1, 'R5')]], [[(-1, 0, 'R5'), (13, 1, 'R5')]],
    [[(-1, 0, 'R5'), (13, 1, 'R5')]], [[(-1, 0, 'R5'), (13, 1, 'R5')]],
    [[(13, 0, 'R1'), (-1, 1, 'R1')]], [[(-1, 0, 'R1'), (17, 1, 'R1')]],
    [[(14, 0, 'R4'), (-1, 1, 'R4')]], [[(13, 0, 'R1'), (-1, 1, 'R1')]],
    [[(16, 0, 'R4'), (-1, 1, 'R4')]], [[(16, 0, 'R4'), (-1, 1, 'R4')]],
    [[(16, 0, 'R4'), (-1, 1, 'R4')]], [[(16, 0, 'R4'), (-1, 1, 'R4')]],
    [[(13, 0, 'R1'), (-1, 1, 'R1')]], [[(13, 0, 'R1'), (-1, 1, 'R1')]],
    [[(14, 0, 'R4'), (-1, 1, 'R4')]], [[(13, 0, 'R1'), (-1, 1, 'R1')]],
    [[(12, 0, 'R1'), (-1, 1, 'R1')]], [[(14, 0, 'R4'), (-1, 1, 'R4')]],
    [[(-1, 0, 'R5'), (14, 1, 'R5')]], [[(14, 0, 'R4'), (-1, 1, 'R4')]],
    [[(14, 0, 'R4'), (-1, 1, 'R4')]], [[(14, 0, 'R4'), (-1, 1, 'R4')]],
    [[(14, 0, 'R4'), (-1, 1, 'R4')]], [[(-1, 0, 'R1'), (21, 1, 'R1')]],
    [[(-1, 0, 'R1'), (21, 1, 'R1')]], [[(-1, 0, 'R1'), (21, 1, 'R1')]],
    [[(13, 0, 'R6'), (-1, 1, 'R6')]], [[(13, 0, 'R2'), (-1, 1, 'R2')]],
    [[(-1, 0, 'R6'), (12, 1, 'R6')]], [[(13, 0, 'R1'), (-1, 1, 'R1')]],
    [[(13, 0, 'R1'), (-1, 1, 'R1')]], [[(-1, 0, 'R6'), (14, 1, 'R6')]],
    [[(-1, 0, 'R5'), (5, 1, 'R5')]], [[(3, 0, 'R2'), (-1, 1, 'R2')]],
    [[(-1, 0, 'R1'), (21, 1, 'R1')]], [[(-1, 0, 'R1'), (21, 1, 'R1')]],
    [[(-1, 0, 'R1'), (21, 1, 'R1')]], [[(-1, 0, 'R5'), (1, 1, 'R5')]],
    [[(1, 0, 'R2'), (-1, 1, 'R2')]], [[(-1, 0, 'R2'), (19, 1, 'R2')]],
    [[(13, 0, 'R4'), (-1, 1, 'R4')]], [[(12, 0, 'R4'), (-1, 1, 'R4')]],
    [[(-1, 0, 'R3'), (2, 1, 'R3')]], [[(11, 0, 'R4'), (-1, 1, 'R4')]],
    [[(6, 0, 'R6'), (-1, 1, 'R6')]], [[(6, 0, 'R6'), (-1, 1, 'R6')]],
    [[(1, 0, 'R2'), (-1, 1, 'R2')]], [[(12, 0, 'R4'), (-1, 1, 'R4')]]
]

jobs = small_jobs if instance == 0 else large_jobs

#----------------------------------------------------------------------------
# Helper data.
num_jobs = len(jobs)
all_jobs = range(num_jobs)
num_machines = 2
all_machines = range(num_machines)

#----------------------------------------------------------------------------
# Model.
model = cp_model.CpModel()

#----------------------------------------------------------------------------
# Compute a maximum makespan greedily.
horizon = 0
for job in jobs:
  for task in job:
    max_task_duration = 0
    for alternative in task:
      max_task_duration = max(max_task_duration, alternative[0])
    horizon += max_task_duration

print('Horizon = %i' % horizon)

#----------------------------------------------------------------------------
# Global storage of variables.
intervals_per_machines = collections.defaultdict(list)
presences_per_machines = collections.defaultdict(list)
starts_per_machines = collections.defaultdict(list)
ends_per_machines = collections.defaultdict(list)
resources_per_machines = collections.defaultdict(list)
ranks_per_machines = collections.defaultdict(list)

job_starts = {}  # indexed by (job_id, task_id).
job_presences = {}  # indexed by (job_id, task_id, alt_id).
job_ranks = {}  # indexed by (job_id, task_id, alt_id).
job_ends = []  # indexed by job_id

#----------------------------------------------------------------------------
# Scan the jobs and create the relevant variables and intervals.
for job_id in all_jobs:
  job = jobs[job_id]
  num_tasks = len(job)
  previous_end = None
  for task_id in range(num_tasks):
    task = job[task_id]

    min_duration = task[0][0]
    max_duration = task[0][0]

    num_alternatives = len(task)
    all_alternatives = range(num_alternatives)

    for alt_id in range(1, num_alternatives):
      alt_duration = task[alt_id][0]
      min_duration = min(min_duration, alt_duration)
      max_duration = max(max_duration, alt_duration)

    # Create main interval for the task.
    suffix_name = '_j%i_t%i' % (job_id, task_id)
    start = model.NewIntVar(0, horizon, 'start' + suffix_name)
    duration = model.NewIntVar(min_duration, max_duration,
                               'duration' + suffix_name)
    end = model.NewIntVar(0, horizon, 'end' + suffix_name)

    # Store the start for the solution.
    job_starts[(job_id, task_id)] = start

    # Add precedence with previous task in the same job.
    if previous_end:
      model.Add(start >= previous_end)
    previous_end = end

    # Create alternative intervals.
    l_presences = []
    for alt_id in all_alternatives:
      ### add to link interval with eqp constraint.
      ### process time = -1 cannot be processed at this machine.
      if jobs[job_id][task_id][alt_id][0] == -1:
        continue
      alt_suffix = '_j%i_t%i_a%i' % (job_id, task_id, alt_id)
      l_presence = model.NewBoolVar('presence' + alt_suffix)
      l_start = model.NewIntVar(0, horizon, 'start' + alt_suffix)
      l_duration = task[alt_id][0]
      l_end = model.NewIntVar(0, horizon, 'end' + alt_suffix)
      l_interval = model.NewOptionalIntervalVar(
          l_start, l_duration, l_end, l_presence, 'interval' + alt_suffix)
      l_rank = model.NewIntVar(-1, num_jobs, 'rank' + alt_suffix)
      l_presences.append(l_presence)
      l_machine = task[alt_id][1]
      l_type = task[alt_id][2]

      # Link the master variables with the local ones.
      model.Add(start == l_start).OnlyEnforceIf(l_presence)
      model.Add(duration == l_duration).OnlyEnforceIf(l_presence)
      model.Add(end == l_end).OnlyEnforceIf(l_presence)

      # Add the local variables to the right machine.
      intervals_per_machines[l_machine].append(l_interval)
      starts_per_machines[l_machine].append(l_start)
      ends_per_machines[l_machine].append(l_end)
      presences_per_machines[l_machine].append(l_presence)
      resources_per_machines[l_machine].append(l_type)
      ranks_per_machines[l_machine].append(l_rank)

      # Store the variables for the solution.
      job_presences[(job_id, task_id, alt_id)] = l_presence
      job_ranks[(job_id, task_id, alt_id)] = l_rank

    # Only one machine can process each lot.
    model.Add(sum(l_presences) == 1)

  job_ends.append(previous_end)

#----------------------------------------------------------------------------
# Create machines constraints nonoverlap process
for machine_id in all_machines:
  intervals = intervals_per_machines[machine_id]
  if len(intervals) > 1:
    model.AddNoOverlap(intervals)

#----------------------------------------------------------------------------
# Transition times and transition costs using a circuit constraint.
switch_literals = []
for machine_id in all_machines:
  machine_starts = starts_per_machines[machine_id]
  machine_ends = ends_per_machines[machine_id]
  machine_presences = presences_per_machines[machine_id]
  machine_resources = resources_per_machines[machine_id]
  machine_ranks = ranks_per_machines[machine_id]
  intervals = intervals_per_machines[machine_id]
  arcs = []
  num_machine_tasks = len(machine_starts)
  all_machine_tasks = range(num_machine_tasks)

  for i in all_machine_tasks:
    # Initial arc from the dummy node (0) to a task.
    start_lit = model.NewBoolVar('')
    arcs.append([0, i + 1, start_lit])
    # If this task is the first, set both rank and start to 0.
    model.Add(machine_ranks[i] == 0).OnlyEnforceIf(start_lit)
    model.Add(machine_starts[i] == 0).OnlyEnforceIf(start_lit)
    # Final arc from an arc to the dummy node.
    arcs.append([i + 1, 0, model.NewBoolVar('')])
    # Self arc if the task is not performed.
    arcs.append([i + 1, i + 1, machine_presences[i].Not()])
    model.Add(machine_ranks[i] == -1).OnlyEnforceIf(
        machine_presences[i].Not())

    for j in all_machine_tasks:
      if i == j:
        continue

      lit = model.NewBoolVar('%i follows %i' % (j, i))
      arcs.append([i + 1, j + 1, lit])
      model.AddImplication(lit, machine_presences[i])
      model.AddImplication(lit, machine_presences[j])

      # Maintain rank incrementally.
      model.Add(machine_ranks[j] == machine_ranks[i] + 1).OnlyEnforceIf(lit)

      # Compute the transition time if task j is the successor of task i.
      if machine_resources[i] != machine_resources[j]:
        transition_time = 3
        switch_literals.append(lit)
      else:
        transition_time = 0
      # We add the reified transition to link the literals with the times
      # of the tasks.
      model.Add(machine_starts[j] == machine_ends[i] +
                transition_time).OnlyEnforceIf(lit)

  model.AddCircuit(arcs)

#----------------------------------------------------------------------------
# Objective.
makespan = model.NewIntVar(0, horizon, 'makespan')
model.AddMaxEquality(makespan, job_ends)
makespan_weight = 1
transition_weight = 5
model.Minimize(makespan * makespan_weight +
               sum(switch_literals) * transition_weight)

#----------------------------------------------------------------------------
# Write problem to file.
if output_proto:
  print('Writing proto to %s' % output_proto)
  with open(output_proto, 'w') as text_file:
    text_file.write(str(model))

#----------------------------------------------------------------------------
# Solve.
solver = cp_model.CpSolver()
solver.parameters.max_time_in_seconds = 60 * 60 * 2
if parameters:
  text_format.Merge(parameters, solver.parameters)
solution_printer = SolutionPrinter(makespan)
status = solver.SolveWithSolutionCallback(model, solution_printer)

#----------------------------------------------------------------------------
# Print solution.
if status == cp_model.FEASIBLE or status == cp_model.OPTIMAL:
  for job_id in all_jobs:
    for task_id in range(len(jobs[job_id])):
      start_value = solver.Value(job_starts[(job_id, task_id)])
      machine = 0
      duration = 0
      select = 0
      rank = -1

      for alt_id in range(len(jobs[job_id][task_id])):
        if jobs[job_id][task_id][alt_id][0] == -1:
          continue

        if solver.BooleanValue(job_presences[(job_id, task_id, alt_id)]):
          duration = jobs[job_id][task_id][alt_id][0]
          machine = jobs[job_id][task_id][alt_id][1]
          select = alt_id
          rank = solver.Value(job_ranks[(job_id, task_id, alt_id)])

      print(
          '  Job %i starts at %i (alt %i, duration %i) with rank %i on machine %i'
          % (job_id, start_value, select, duration, rank, machine))

  print('Solve status: %s' % solver.StatusName(status))
  print('Objective value: %i' % solver.ObjectiveValue())
  print('Makespan: %i' % solver.Value(makespan))