In [ ]:
from ortools.sat.python import cp_model
def SolveRosteringWithTravel():
model = cp_model.CpModel()
# [duration, start, end, location]
jobs = [[3, 0, 6, 1], [5, 0, 6, 0], [1, 3, 7, 1], [1, 3, 5, 0], [3, 0, 3, 0],
[3, 0, 8, 0]]
max_length = 20
num_machines = 3
all_machines = range(num_machines)
horizon = 20
travel_time = 1
num_jobs = len(jobs)
all_jobs = range(num_jobs)
intervals = []
optional_intervals = []
performed = []
starts = []
ends = []
travels = []
for m in all_machines:
optional_intervals.append([])
for i in all_jobs:
# Create main interval.
start = model.NewIntVar(jobs[i][1], horizon, 'start_%i' % i)
duration = jobs[i][0]
end = model.NewIntVar(0, jobs[i][2], 'end_%i' % i)
interval = model.NewIntervalVar(start, duration, end, 'interval_%i' % i)
starts.append(start)
intervals.append(interval)
ends.append(end)
job_performed = []
job_travels = []
for m in all_machines:
performed_on_m = model.NewBoolVar('perform_%i_on_m%i' % (i, m))
job_performed.append(performed_on_m)
# Create an optional copy of interval to be executed on a machine
location0 = model.NewIntVar(jobs[i][3], jobs[i][3],
'location_%i_on_m%i' % (i, m))
start0 = model.NewIntVar(jobs[i][1], horizon, 'start_%i_on_m%i' % (i, m))
end0 = model.NewIntVar(0, jobs[i][2], 'end_%i_on_m%i' % (i, m))
interval0 = model.NewOptionalIntervalVar(
start0, duration, end0, performed_on_m, 'interval_%i_on_m%i' % (i, m))
optional_intervals[m].append(interval0)
# We only propagate the constraint if the tasks is performed on the machine.
model.Add(start0 == start).OnlyEnforceIf(performed_on_m)
# Adding travel constraint
travel = model.NewBoolVar('is_travel_%i_on_m%i' % (i, m))
startT = model.NewIntVar(0, horizon, 'start_%i_on_m%i' % (i, m))
endT = model.NewIntVar(0, horizon, 'end_%i_on_m%i' % (i, m))
intervalT = model.NewOptionalIntervalVar(
startT, travel_time, endT, travel,
'travel_interval_%i_on_m%i' % (i, m))
optional_intervals[m].append(intervalT)
job_travels.append(travel)
model.Add(end0 == startT).OnlyEnforceIf(travel)
performed.append(job_performed)
travels.append(job_travels)
model.Add(sum(job_performed) == 1)
for m in all_machines:
if m == 1:
for i in all_jobs:
if i == 2:
for c in all_jobs:
if (i != c) and (jobs[i][3] != jobs[c][3]):
is_job_earlier = model.NewBoolVar('is_j%i_earlier_j%i' % (i, c))
model.Add(starts[i] < starts[c]).OnlyEnforceIf(is_job_earlier)
model.Add(starts[i] >= starts[c]).OnlyEnforceIf(
is_job_earlier.Not())
# Max Length constraint (modeled as a cumulative)
# model.AddCumulative(intervals, demands, max_length)
# Choose which machine to perform the jobs on.
for m in all_machines:
model.AddNoOverlap(optional_intervals[m])
# Objective variable.
total_cost = model.NewIntVar(0, 1000, 'cost')
model.Add(total_cost == sum(
performed[j][m] * (10 * (m + 1)) for j in all_jobs for m in all_machines))
model.Minimize(total_cost)
# Solve model.
solver = cp_model.CpSolver()
result = solver.Solve(model)
print()
print(result)
print('Statistics')
print(' - conflicts : %i' % solver.NumConflicts())
print(' - branches : %i' % solver.NumBranches())
print(' - wall time : %f ms' % solver.WallTime())
SolveRosteringWithTravel()