In [ ]:
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Max flow problem in Google CP Solver.
From Taha 'Introduction to Operations Research', Example 6.4-2
Translated from the AMPL code at
http://taha.ineg.uark.edu/maxflo.txt
Compare with the following model:
* MiniZinc: http://www.hakank.org/minizinc/max_flow_taha.mzn
This model was created by Hakan Kjellerstrand (hakank@gmail.com)
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
from __future__ import print_function
from ortools.constraint_solver import pywrapcp
# Create the solver.
solver = pywrapcp.Solver('Max flow problem, Taha')
#
# data
#
n = 5
start = 0
end = n - 1
nodes = list(range(n))
# cost matrix
c = [[0, 20, 30, 10, 0], [0, 0, 40, 0, 30], [0, 0, 0, 10, 20],
[0, 0, 5, 0, 20], [0, 0, 0, 0, 0]]
#
# declare variables
#
x = {}
for i in nodes:
for j in nodes:
x[i, j] = solver.IntVar(0, c[i][j], 'x[%i,%i]' % (i, j))
x_flat = [x[i, j] for i in nodes for j in nodes]
out_flow = [solver.IntVar(0, 10000, 'out_flow[%i]' % i) for i in nodes]
in_flow = [solver.IntVar(0, 10000, 'in_flow[%i]' % i) for i in nodes]
total = solver.IntVar(0, 10000, 'z')
#
# constraints
#
cost_sum = solver.Sum([x[start, j] for j in nodes if c[start][j] > 0])
solver.Add(total == cost_sum)
for i in nodes:
in_flow_sum = solver.Sum([x[j, i] for j in nodes if c[j][i] > 0])
solver.Add(in_flow[i] == in_flow_sum)
out_flow_sum = solver.Sum([x[i, j] for j in nodes if c[i][j] > 0])
solver.Add(out_flow[i] == out_flow_sum)
# in_flow == out_flow
for i in nodes:
if i != start and i != end:
solver.Add(out_flow[i] - in_flow[i] == 0)
s1 = [x[i, start] for i in nodes if c[i][start] > 0]
if len(s1) > 0:
solver.Add(solver.Sum([x[i, start] for i in nodes if c[i][start] > 0] == 0))
s2 = [x[end, j] for j in nodes if c[end][j] > 0]
if len(s2) > 0:
solver.Add(solver.Sum([x[end, j] for j in nodes if c[end][j] > 0]) == 0)
# objective: maximize total cost
objective = solver.Maximize(total, 1)
#
# solution and search
#
db = solver.Phase(x_flat, solver.INT_VAR_DEFAULT, solver.ASSIGN_MAX_VALUE)
solver.NewSearch(db, [objective])
num_solutions = 0
while solver.NextSolution():
num_solutions += 1
print('total:', total.Value())
print('in_flow:', [in_flow[i].Value() for i in nodes])
print('out_flow:', [out_flow[i].Value() for i in nodes])
for i in nodes:
for j in nodes:
print('%2i' % x[i, j].Value(), end=' ')
print()
print()
print('num_solutions:', num_solutions)
print('failures:', solver.Failures())
print('branches:', solver.Branches())
print('WallTime:', solver.WallTime(), 'ms')