In [ ]:
# Copyright 2011 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Game theory in Google or-tools.
2 player zero sum game.
From Taha, Operations Research (8'th edition), page 528.
This model was created by Hakan Kjellerstrand (hakank@gmail.com)
Also see my other Google CP Solver models:
http://www.hakank.org/google_or_tools/
"""
from __future__ import print_function
import sys
from ortools.linear_solver import pywraplp
# Create the solver.
# using GLPK
if sol == 'GLPK':
solver = pywraplp.Solver('CoinsGridGLPK',
pywraplp.Solver.GLPK_LINEAR_PROGRAMMING)
else:
# Using CLP
solver = pywraplp.Solver('CoinsGridCLP',
pywraplp.Solver.CLP_LINEAR_PROGRAMMING)
# data
rows = 3
cols = 3
game = [[3.0, -1.0, -3.0], [-2.0, 4.0, -1.0], [-5.0, -6.0, 2.0]]
#
# declare variables
#
#
# row player
#
x1 = [solver.NumVar(0, 1, 'x1[%i]' % i) for i in range(rows)]
v = solver.NumVar(-2, 2, 'v')
for i in range(rows):
solver.Add(v - solver.Sum([x1[j] * game[j][i] for j in range(cols)]) <= 0)
solver.Add(solver.Sum(x1) == 1)
objective = solver.Maximize(v)
solver.Solve()
print()
print('row player:')
print('v = ', solver.Objective().Value())
print('Strategies: ')
for i in range(rows):
print(x1[i].SolutionValue(), end=' ')
print()
print()
#
# For column player:
#
x2 = [solver.NumVar(0, 1, 'x2[%i]' % i) for i in range(cols)]
v2 = solver.NumVar(-2, 2, 'v2')
for i in range(cols):
solver.Add(v2 - solver.Sum([x2[j] * game[i][j] for j in range(rows)]) >= 0)
solver.Add(solver.Sum(x2) == 1)
objective = solver.Minimize(v2)
solver.Solve()
print()
print('column player:')
print('v2 = ', solver.Objective().Value())
print('Strategies: ')
for i in range(rows):
print(x2[i].SolutionValue(), end=' ')
print()
print()
print('walltime :', solver.WallTime(), 'ms')
print('iterations:', solver.Iterations())
print()