In [ ]:
# Copyright 2011 Hakan Kjellerstrand hakank@gmail.com
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

  3 jugs problem using MIP in Google or-tools.

  A.k.a. water jugs problem.

  Problem from Taha 'Introduction to Operations Research',
  page 245f .

  Compare with the CP model:
     http://www.hakank.org/google_or_tools/3_jugs_regular

  This model was created by Hakan Kjellerstrand (hakank@gmail.com)
  Also see my other Google CP Solver models:
  http://www.hakank.org/google_or_tools/
"""
from __future__ import print_function
import sys
from ortools.linear_solver import pywraplp



# Create the solver.

print('Solver: ', sol)

# using GLPK
if sol == 'GLPK':
  solver = pywraplp.Solver('CoinsGridGLPK',
                           pywraplp.Solver.GLPK_MIXED_INTEGER_PROGRAMMING)
else:
  # Using CBC
  solver = pywraplp.Solver('CoinsGridCBC',
                           pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING)

#
# data
#
n = 15
start = 0  # start node
end = 14  # end node
M = 999  # a large number

nodes = [
    '8,0,0',  # start
    '5,0,3',
    '5,3,0',
    '2,3,3',
    '2,5,1',
    '7,0,1',
    '7,1,0',
    '4,1,3',
    '3,5,0',
    '3,2,3',
    '6,2,0',
    '6,0,2',
    '1,5,2',
    '1,4,3',
    '4,4,0'  # goal!
]

# distance
d = [[M, 1, M, M, M, M, M, M, 1, M, M, M, M, M, M],
     [M, M, 1, M, M, M, M, M, M, M, M, M, M, M, M],
     [M, M, M, 1, M, M, M, M, 1, M, M, M, M, M, M],
     [M, M, M, M, 1, M, M, M, M, M, M, M, M, M, M],
     [M, M, M, M, M, 1, M, M, 1, M, M, M, M, M, M],
     [M, M, M, M, M, M, 1, M, M, M, M, M, M, M, M],
     [M, M, M, M, M, M, M, 1, 1, M, M, M, M, M, M],
     [M, M, M, M, M, M, M, M, M, M, M, M, M, M, 1],
     [M, M, M, M, M, M, M, M, M, 1, M, M, M, M, M],
     [M, 1, M, M, M, M, M, M, M, M, 1, M, M, M, M],
     [M, M, M, M, M, M, M, M, M, M, M, 1, M, M, M],
     [M, 1, M, M, M, M, M, M, M, M, M, M, 1, M, M],
     [M, M, M, M, M, M, M, M, M, M, M, M, M, 1, M],
     [M, 1, M, M, M, M, M, M, M, M, M, M, M, M, 1],
     [M, M, M, M, M, M, M, M, M, M, M, M, M, M, M]]

#
# variables
#

# requirements (right hand statement)
rhs = [solver.IntVar(-1, 1, 'rhs[%i]' % i) for i in range(n)]

x = {}
for i in range(n):
  for j in range(n):
    x[i, j] = solver.IntVar(0, 1, 'x[%i,%i]' % (i, j))

out_flow = [solver.IntVar(0, 1, 'out_flow[%i]' % i) for i in range(n)]
in_flow = [solver.IntVar(0, 1, 'in_flow[%i]' % i) for i in range(n)]

# length of path, to be minimized
z = solver.Sum(
    [d[i][j] * x[i, j] for i in range(n) for j in range(n) if d[i][j] < M])

#
# constraints
#

for i in range(n):
  if i == start:
    solver.Add(rhs[i] == 1)
  elif i == end:
    solver.Add(rhs[i] == -1)
  else:
    solver.Add(rhs[i] == 0)

# outflow constraint
for i in range(n):
  solver.Add(
      out_flow[i] == solver.Sum([x[i, j] for j in range(n) if d[i][j] < M]))

# inflow constraint
for j in range(n):
  solver.Add(
      in_flow[j] == solver.Sum([x[i, j] for i in range(n) if d[i][j] < M]))

# inflow = outflow
for i in range(n):
  solver.Add(out_flow[i] - in_flow[i] == rhs[i])

# objective
objective = solver.Minimize(z)

#
# solution and search
#
solver.Solve()

print()
print('z: ', int(solver.Objective().Value()))

t = start
while t != end:
  print(nodes[t], '->', end=' ')
  for j in range(n):
    if x[t, j].SolutionValue() == 1:
      print(nodes[j])
      t = j
      break

print()
print('walltime  :', solver.WallTime(), 'ms')
if sol == 'CBC':
  print('iterations:', solver.Iterations())