In [ ]:
# Copyright 2010-2018 Google LLC
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START program]
"""Vehicles Routing Problem (VRP) with Resource Constraints."""

# [START import]
from __future__ import print_function
from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp
# [END import]


# [START data_model]
def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['time_matrix'] = [
        [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7],
        [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14],
        [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9],
        [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16],
        [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14],
        [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8],
        [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5],
        [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10],
        [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6],
        [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5],
        [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4],
        [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10],
        [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8],
        [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6],
        [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2],
        [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9],
        [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0],
    ]
    data['time_windows'] = [
        (0, 5),  # depot
        (7, 12),  # 1
        (10, 15),  # 2
        (5, 14),  # 3
        (5, 13),  # 4
        (0, 5),  # 5
        (5, 10),  # 6
        (0, 10),  # 7
        (5, 10),  # 8
        (0, 5),  # 9
        (10, 16),  # 10
        (10, 15),  # 11
        (0, 5),  # 12
        (5, 10),  # 13
        (7, 12),  # 14
        (10, 15),  # 15
        (5, 15),  # 16
    ]
    data['num_vehicles'] = 4
    # [START resources_data]
    data['vehicle_load_time'] = 5
    data['vehicle_unload_time'] = 5
    data['depot_capacity'] = 2
    # [END resources_data]
    data['depot'] = 0
    return data
    # [END data_model]


# [START solution_printer]
def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    time_dimension = routing.GetDimensionOrDie('Time')
    total_time = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        while not routing.IsEnd(index):
            time_var = time_dimension.CumulVar(index)
            plan_output += '{0} Time({1},{2}) -> '.format(
                manager.IndexToNode(index), solution.Min(time_var),
                solution.Max(time_var))
            index = solution.Value(routing.NextVar(index))
        time_var = time_dimension.CumulVar(index)
        plan_output += '{0} Time({1},{2})\n'.format(manager.IndexToNode(index),
                                                    solution.Min(time_var),
                                                    solution.Max(time_var))
        plan_output += 'Time of the route: {}min\n'.format(
            solution.Min(time_var))
        print(plan_output)
        total_time += solution.Min(time_var)
    print('Total time of all routes: {}min'.format(total_time))
    # [END solution_printer]


"""Solve the VRP with time windows."""
# Instantiate the data problem.
# [START data]
data = create_data_model()
# [END data]

# Create the routing index manager.
# [START index_manager]
manager = pywrapcp.RoutingIndexManager(len(data['time_matrix']),
                                       data['num_vehicles'], data['depot'])
# [END index_manager]

# Create Routing Model.
# [START routing_model]
routing = pywrapcp.RoutingModel(manager)

# [END routing_model]

# Create and register a transit callback.
# [START transit_callback]
def time_callback(from_index, to_index):
    """Returns the travel time between the two nodes."""
    # Convert from routing variable Index to time matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data['time_matrix'][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(time_callback)
# [END transit_callback]

# Define cost of each arc.
# [START arc_cost]
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
# [END arc_cost]

# Add Time Windows constraint.
# [START time_windows_constraint]
time = 'Time'
routing.AddDimension(
    transit_callback_index,
    60,  # allow waiting time
    60,  # maximum time per vehicle
    False,  # Don't force start cumul to zero.
    time)
time_dimension = routing.GetDimensionOrDie(time)
# Add time window constraints for each location except depot.
for location_idx, time_window in enumerate(data['time_windows']):
    if location_idx == 0:
        continue
    index = manager.NodeToIndex(location_idx)
    time_dimension.CumulVar(index).SetRange(time_window[0], time_window[1])
# Add time window constraints for each vehicle start node.
for vehicle_id in range(data['num_vehicles']):
    index = routing.Start(vehicle_id)
    time_dimension.CumulVar(index).SetRange(data['time_windows'][0][0],
                                            data['time_windows'][0][1])
# [END time_windows_constraint]

# Add resource constraints at the depot.
# [START depot_load_time]
solver = routing.solver()
intervals = []
for i in range(data['num_vehicles']):
    # Add time windows at start of routes
    intervals.append(
        solver.FixedDurationIntervalVar(
            time_dimension.CumulVar(routing.Start(i)),
            data['vehicle_load_time'], 'depot_interval'))
    # Add time windows at end of routes.
    intervals.append(
        solver.FixedDurationIntervalVar(
            time_dimension.CumulVar(routing.End(i)),
            data['vehicle_unload_time'], 'depot_interval'))
# [END depot_load_time]

# [START depot_capacity]
depot_usage = [1 for i in range(len(intervals))]
solver.Add(
    solver.Cumulative(intervals, depot_usage, data['depot_capacity'],
                      'depot'))
# [END depot_capacity]

# Instantiate route start and end times to produce feasible times.
# [START depot_start_end_times]
for i in range(data['num_vehicles']):
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.Start(i)))
    routing.AddVariableMinimizedByFinalizer(
        time_dimension.CumulVar(routing.End(i)))
# [END depot_start_end_times]

# Setting first solution heuristic.
# [START parameters]
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (
    routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
# [END parameters]

# Solve the problem.
# [START solve]
solution = routing.SolveWithParameters(search_parameters)
# [END solve]

# Print solution on console.
# [START print_solution]
if solution:
    print_solution(data, manager, routing, solution)
# [END print_solution]
else:
    print('No solution found !')