In [23]:
import pandas as pd

In [31]:
dir_ship_info = "./dataset/shop_info.txt"
dir_user_pay = "./dataset/user_pay.txt"
dir_user_view = "./dataset/user_view.txt"
shop_info = pd.read_csv(dir_ship_info, sep=',', names=["shop_id","city_name","location_id","per_pay","score","comment_cnt","shop_level","cate_1_name","cate_2_name","cate_3_name"])
user_pay = pd.read_csv(dir_user_pay, sep=",", names=["user_id","shop_id","time_stamp"])
user_view = pd.read_csv(dir_user_view, sep=",", names=["user_id","shop_id","time_stamp"])


# dir_ouput= "./result.txt"
# output=pd.DataFrame()
# output.to_csv(dir_ouput, sep=",", names= ["shop_id","day1","..."])

In [25]:
shop_info.head()


Out[25]:
shop_id city_name location_id per_pay score comment_cnt shop_level cate_1_name cate_2_name cate_3_name
0 1 湖州 885 8 4.0 12.0 2 美食 休闲茶饮 饮品/甜点
1 2 哈尔滨 64 19 NaN NaN 1 超市便利店 超市 NaN
2 3 南昌 774 5 3.0 2.0 0 美食 休闲茶饮 奶茶
3 4 天津 380 18 NaN NaN 1 超市便利店 超市 NaN
4 5 杭州 263 2 2.0 2.0 0 美食 休闲食品 生鲜水果

In [29]:
user_pay.head()


Out[29]:
user_id shop_id time_stamp
0 22127870 1862 2015-12-25 17:00:00
1 3434231 1862 2016-10-05 11:00:00
2 16955285 1862 2016-02-10 15:00:00
3 13799128 1862 2016-01-13 14:00:00
4 13799128 1862 2016-07-05 12:00:00

In [27]:
user_view.head()


Out[27]:
user_id shop_id time_stamp
0 13201967 1197 2016-10-21 18:00:00
1 19461365 1197 2016-06-28 23:00:00
2 15022321 1197 2016-07-16 19:00:00
3 5440872 1197 2016-07-15 07:00:00
4 12594529 1197 2016-08-07 16:00:00

In [ ]: