In [2]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/",one_hot=True)
In [3]:
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step =1
n_input = 784
n_classes = 10
n_hidden_1 = 256
n_hidden_2 = 256
In [21]:
X = tf.placeholder(tf.float32, [None, n_input], name="input")
Y = tf.placeholder(tf.float32, [None, n_classes], name="output")
In [22]:
def multilayer_perceptron(X, weights, biases):
layer_1 = tf.add(tf.matmul(X, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
layer_2 = tf.add(tf.matmul(layer_1,weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
out_layer = tf.matmul(layer_2,weights['out']) + biases['out']
return out_layer
In [23]:
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out':tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1' : tf.Variable(tf.random_normal([n_hidden_1])),
'b2' : tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = multilayer_perceptron(X, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred,Y))
optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate).minimize(cost)
init = tf.initialize_all_variables()
In [25]:
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
for i in range(total_batch):
batch_X, batch_Y = mnist. train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_X, Y: batch_Y})
avg_cost += c/total_batch
if epoch % display_step == 0:
print("Epoch:"+'%04d' % (epoch+1), "cost=" + "{:.9f}".format(avg_cost))
print("Optimization Finished!")
correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(Y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
print("Accuracy : " +str(accuracy.eval({X:mnist.test.images, Y:mnist.test.labels})))
In [ ]: