In [11]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
rng = np.random
In [3]:
learning_rate = 0.01
training_epochs = 1000
display_step = 50
In [4]:
train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
In [5]:
X = tf.placeholder("float")
Y = tf.placeholder("float")
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")
In [6]:
pred = tf.add(tf.mul(X,W), b)
In [7]:
cost = tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
In [8]:
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
In [9]:
init = tf.initialize_all_variables()
In [14]:
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
for x, y in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X:x, Y:y})
if (epoch+1) % display_step == 0:
c = sess.run(cost,feed_dict={X:train_X, Y:train_Y})
print("epoch: "+ "%04d"%(epoch+1) + " cost: "+"{:.9f}".format(c) +" W: "+str(sess.run(W))," : "+str(sess.run(b)))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost : ", str(training_cost)+ " W: "+str(sess.run(W)), " b: "+str(sess.run(b)))
plt.plot(train_X, train_Y, 'ro', label ="original data")
plt.plot(train_X, sess.run(W)* train_X +sess.run(b), label='Fitted Line')
plt.legend()
plt.show()
In [ ]: