In [ ]:


In [2]:
import mesa as ms
import matplotlib.pyplot as plt
from matplotlib import gridspec
import numpy as np

In [3]:
#folder = '/media/glauffer/Data/mesa/alpha2_cno_3alf/LOGS/'
folder = '/home/glauffer/Dropbox/UFRGS/kepler/mesa/alpha2_cno_3alf/LOGS/'
s = ms.history_data(folder)
t = s.get('log_Teff')
L = s.get('log_L')
mass = s.get('star_mass')
age = s.get('star_age')
models = s.get('model_number')


Using old history.datasa file ...
 reading ...100% 


In [4]:
a = ms.mesa_profile(folder, models[437])
e = a.get('eps_nuc')
cam = a.get('zone')


56 in profiles.index file ...
Found and load nearest profile for cycle 450
reading /home/glauffer/Dropbox/UFRGS/kepler/mesa/alpha2_cno_3alf/LOGS//profile15.data ...
 reading ...100% 


In [8]:
%matplotlib inline
plt.figure(0, figsize=(20,15))

ax1 = plt.subplot2grid((2,2), (0,0))
ax1.plot(cam, e)

ax2 = plt.subplot2grid((2,2), (1,0), colspan=2)
ax2.plot(- np.log(1 - a.get('q')), a.get('h1'))
ax2.set_title(r'HRD $\alpha_{MLT}=2$', fontsize=18)
ax2.set_xlabel(r'$\log T_{Eff}$', fontsize=16)
ax2.set_ylabel(r'$\log L$', fontsize=16)

ax3 = plt.subplot2grid((2,2), (0, 1))
ax3.plot(t, L)
ax3.plot(t[437], L[437], 'ko')
ax3.invert_xaxis()
ax3.set_title(r'HRD $\alpha_{MLT}=2$', fontsize=18)
ax3.set_xlabel(r'$\log T_{Eff}$', fontsize=16)
ax3.set_ylabel(r'$\log L$', fontsize=16)
#plt.figure()
#gs = gridspec.GridSpec(1, 1)

#ax1.fig_addsubplot(gs[0,0])
#ax1.plot(cam, e)

#ax2.fig_addsubplot(gs[0,1])
#ax2.plot(t, L)
#ax2.plot(t[437], L[437], 'ko')

#ax3.fig_addsubplot(gs[1,:])
#ax3.plot(- np.log(1 - a.get('q')), a.get('h1'))

#plt.subplot(211)
#plt.plot(cam, e)

#plt.subplot(212)
#plt.plot(t, L)
#plt.plot(t[437], L[437])

#plt.subplot(221)


Out[8]:
<matplotlib.text.Text at 0x7f0c648c64d0>

In [14]:
# apenas energia e hrd
plt.figure(0, figsize=(20,15))

#plt.suptitle(r'$M_i = $' + str(mass[0]) + r'$M_\odot$, $M_{model} = $' +
#             str(mass[437]) + r'$M_\odot$, ' 'Age = ' + str(age[437]) + ', model n ' + str(437), fontsize=18 )
plt.suptitle(r'$M_i = $' + str(mass[0]) + r'$M_\odot$, $M_{model} = $' +
             str(mass[437]) + r'$M_\odot$, model n ' + str(437), fontsize=18 )


#plt.tight_layout()
ax1 = plt.subplot(221)
ax1.plot(cam, e)
ax1.set_xlabel('camadas', fontsize=16)
ax1.set_ylabel(r'$\epsilon_{nuc}$', fontsize=16)


ax3 = plt.subplot(222)
ax3.plot(t, L)
ax3.plot(t[437], L[437], 'ko')
ax3.invert_xaxis()
ax3.set_title(r'HRD $\alpha_{MLT}=2$', fontsize=18)
ax3.set_xlabel(r'$\log T_{Eff}$', fontsize=16)
ax3.set_ylabel(r'$\log L$', fontsize=16)


Out[14]:
<matplotlib.text.Text at 0x7f0c6413d610>

In [16]:
# escrevendo como uma função

def plot_eps_HRD(mass, temp, lum, cam, enuc, i):
    plt.figure(0, figsize=(20,15))
    plt.suptitle(r'$M_i = $' + str(mass[0]) + r'$M_\odot$, $M_{model} = $' +
             str(mass[i]) + r'$M_\odot$, model n ' + str(i), fontsize=18 )
    ax1 = plt.subplot(221)
    ax1.plot(cam, enuc)
    ax1.set_xlabel('camadas', fontsize=16)
    ax1.set_ylabel(r'$\epsilon_{nuc}$', fontsize=16)
    ax3 = plt.subplot(222)
    ax3.plot(temp, lum)
    ax3.plot(temp[i], lum[i], 'ko')
    ax3.invert_xaxis()
    ax3.set_title(r'HRD $\alpha_{MLT}=2$', fontsize=18)
    ax3.set_xlabel(r'$\log T_{Eff}$', fontsize=16)
    ax3.set_ylabel(r'$\log L$', fontsize=16)
    plt.close()

plot_eps_HRD(mass, t, L, cam, e, 437)

In [ ]: