Using TensorFlow backend.
/home/ubuntu/anaconda2/lib/python2.7/site-packages/keras/models.py:826: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
warnings.warn('The `nb_epoch` argument in `fit` '
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 512) 401920
_________________________________________________________________
batch_normalization_1 (Batch (None, 512) 2048
_________________________________________________________________
activation_1 (Activation) (None, 512) 0
_________________________________________________________________
dense_2 (Dense) (None, 256) 131328
_________________________________________________________________
batch_normalization_2 (Batch (None, 256) 1024
_________________________________________________________________
activation_2 (Activation) (None, 256) 0
_________________________________________________________________
dense_3 (Dense) (None, 10) 2570
_________________________________________________________________
activation_3 (Activation) (None, 10) 0
=================================================================
Total params: 538,890.0
Trainable params: 537,354.0
Non-trainable params: 1,536.0
_________________________________________________________________
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [==============================] - 13s - loss: 0.2001 - acc: 0.9420 - val_loss: 0.1283 - val_acc: 0.9665
Epoch 2/20
60000/60000 [==============================] - 13s - loss: 0.0684 - acc: 0.9794 - val_loss: 0.0817 - val_acc: 0.9751
Epoch 3/20
60000/60000 [==============================] - 12s - loss: 0.0382 - acc: 0.9892 - val_loss: 0.0759 - val_acc: 0.9756
Epoch 4/20
60000/60000 [==============================] - 13s - loss: 0.0258 - acc: 0.9925 - val_loss: 0.0736 - val_acc: 0.9779
Epoch 5/20
60000/60000 [==============================] - 12s - loss: 0.0158 - acc: 0.9959 - val_loss: 0.0745 - val_acc: 0.9779
Epoch 6/20
60000/60000 [==============================] - 13s - loss: 0.0130 - acc: 0.9964 - val_loss: 0.0689 - val_acc: 0.9815
Epoch 7/20
60000/60000 [==============================] - 13s - loss: 0.0110 - acc: 0.9968 - val_loss: 0.0644 - val_acc: 0.9814
Epoch 8/20
60000/60000 [==============================] - 13s - loss: 0.0085 - acc: 0.9978 - val_loss: 0.0826 - val_acc: 0.9751
Epoch 9/20
60000/60000 [==============================] - 13s - loss: 0.0085 - acc: 0.9975 - val_loss: 0.0810 - val_acc: 0.9767
Epoch 10/20
60000/60000 [==============================] - 13s - loss: 0.0108 - acc: 0.9966 - val_loss: 0.1106 - val_acc: 0.9709
Epoch 11/20
60000/60000 [==============================] - 13s - loss: 0.0110 - acc: 0.9967 - val_loss: 0.0710 - val_acc: 0.9793
Epoch 12/20
60000/60000 [==============================] - 13s - loss: 0.0063 - acc: 0.9983 - val_loss: 0.0667 - val_acc: 0.9823
Epoch 13/20
60000/60000 [==============================] - 13s - loss: 0.0050 - acc: 0.9986 - val_loss: 0.0848 - val_acc: 0.9785
Epoch 14/20
60000/60000 [==============================] - 13s - loss: 0.0046 - acc: 0.9989 - val_loss: 0.0980 - val_acc: 0.9761
Epoch 15/20
60000/60000 [==============================] - 13s - loss: 0.0050 - acc: 0.9987 - val_loss: 0.0810 - val_acc: 0.9798
Epoch 16/20
60000/60000 [==============================] - 13s - loss: 0.0059 - acc: 0.9983 - val_loss: 0.0843 - val_acc: 0.9791
Epoch 17/20
60000/60000 [==============================] - 13s - loss: 0.0093 - acc: 0.9971 - val_loss: 0.0982 - val_acc: 0.9766
Epoch 18/20
60000/60000 [==============================] - 13s - loss: 0.0074 - acc: 0.9976 - val_loss: 0.0817 - val_acc: 0.9800
Epoch 19/20
60000/60000 [==============================] - 13s - loss: 0.0055 - acc: 0.9983 - val_loss: 0.0780 - val_acc: 0.9817
Epoch 20/20
60000/60000 [==============================] - 17s - loss: 0.0032 - acc: 0.9991 - val_loss: 0.0745 - val_acc: 0.9819
Test Categorical crossentropy: 0.0745038796153
Test accuracy: 0.9819