In [1]:
import warnings
warnings.filterwarnings('ignore')
In [2]:
from datetime import date, time
import pandas as pd
import pylab as pl
import numpy as np
import seaborn as sns
%matplotlib inline
In [3]:
df = pd.read_csv('/media/rafael/KINGSTON/Daten/2014_BAB_S.txt', sep=';')
In [4]:
df = df[(df.Zst == 9627) | (df.Zst == 9629)]
In [5]:
df.columns
Out[5]:
In [6]:
kurz = df[df.Zst == 9627]
lang = df[df.Zst == 9629]
In [7]:
pl.figure()
frame = pd.DataFrame({'kurz': kurz.groupby('Wotag').mean()['Lkw_R1'],
'lang': lang.groupby('Wotag').mean()['Lkw_R1']})
frame.plot(kind='bar', figsize=(16, 9))
pl.title('Wochentag - Richtung 1', fontsize=20);
In [8]:
pl.figure()
frame = pd.DataFrame({'kurz': kurz.groupby('Wotag').mean()['Lkw_R2'],
'lang': lang.groupby('Wotag').mean()['Lkw_R2']})
frame.plot(kind='bar', figsize=(16, 9))
pl.title('Wochentag - Richtung 2', fontsize=20);
In [9]:
pl.figure()
frame = pd.DataFrame({'kurz': kurz.groupby('Stunde').mean()['Lkw_R1'],
'lang': lang.groupby('Stunde').mean()['Lkw_R1']})
frame.plot(kind='bar', figsize=(16, 9))
pl.title('Stunde - Richtung 1', fontsize=20);
In [10]:
pl.figure()
frame = pd.DataFrame({'kurz': kurz.groupby('Stunde').mean()['Lkw_R2'],
'lang': lang.groupby('Stunde').mean()['Lkw_R2']})
frame.plot(kind='bar', figsize=(16, 9))
pl.title('Wochentag - Richtung 2', fontsize=20);
In [11]:
pl.figure()
frame = pd.DataFrame({'LKW': kurz.groupby('Fahrtzw').mean()['Lkw_R1'],
'PKW': kurz.groupby('Fahrtzw').mean()['Pkw_R1']})
frame.plot(kind='bar', figsize=(16, 9))
pl.title('Fahrzw - Richtung 1', fontsize=20);