Here is a list of all our calculated variables:
[(1, 'Average Velocity (mph)'), (2, 'Max Velocity'), (3, 'Velocity Stdev'), (4, 'Average Acceleration (mph per s)'), (5, 'Max Acceleration (mph per s)'), (6, ' Acceleration Stdev'), (7, 'Displacement'), (8, 'Total Distance Traveled'), (9, 'Max Direction Change per sec'), (10, ' Direction Stdev'), (11, 'Time (s)'), (12, 'Turns'), (13, 'Aggressive Turns'), (14, 'Stops'), (15, 'Large Deceleration Events'), (16, 'Deceleration Events'), (17, 'Max Deceleration Event')]
('For n_clusters =\n', 3, 'The average silhouette_score is :', 0.58511308599974932)
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.681
Model: OLS Adj. R-squared: 0.680
Method: Least Squares F-statistic: 576.8
Date: Sun, 10 May 2015 Prob (F-statistic): 0.00
Time: 02:39:44 Log-Likelihood: -4502.2
No. Observations: 4600 AIC: 9038.
Df Residuals: 4583 BIC: 9148.
Df Model: 17
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 0.0689 0.003 26.943 0.000 0.064 0.074
x2 -0.0046 0.002 -2.760 0.006 -0.008 -0.001
x3 0.0159 0.005 3.414 0.001 0.007 0.025
x4 -0.2751 0.048 -5.690 0.000 -0.370 -0.180
x5 0.0106 0.002 6.519 0.000 0.007 0.014
x6 -0.1187 0.028 -4.228 0.000 -0.174 -0.064
x7 -4.993e-06 5.66e-06 -0.882 0.378 -1.61e-05 6.11e-06
x8 -6.554e-05 6.47e-06 -10.132 0.000 -7.82e-05 -5.29e-05
x9 -3.158e-05 0.000 -0.098 0.922 -0.001 0.001
x10 -0.0042 0.000 -12.472 0.000 -0.005 -0.004
x11 0.0009 6.2e-05 15.297 0.000 0.001 0.001
x12 -0.0025 0.002 -1.392 0.164 -0.006 0.001
x13 0.0187 0.005 3.855 0.000 0.009 0.028
x14 0.0070 0.003 2.301 0.021 0.001 0.013
x15 0.0272 0.009 3.182 0.001 0.010 0.044
x16 0.0172 0.003 5.553 0.000 0.011 0.023
x17 0.0079 0.002 3.925 0.000 0.004 0.012
==============================================================================
Omnibus: 316.895 Durbin-Watson: 1.839
Prob(Omnibus): 0.000 Jarque-Bera (JB): 148.669
Skew: 0.251 Prob(JB): 5.21e-33
Kurtosis: 2.276 Cond. No. 4.98e+04
==============================================================================
Warnings:
[1] The condition number is large, 4.98e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
Here's another round with high absolute value t:
('For n_clusters =\n', 3, 'The average silhouette_score is :', 0.58522902193964066)
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.868
Model: OLS Adj. R-squared: 0.868
Method: Least Squares F-statistic: 5051.
Date: Sun, 10 May 2015 Prob (F-statistic): 0.00
Time: 02:39:57 Log-Likelihood: -3267.7
No. Observations: 4600 AIC: 6547.
Df Residuals: 4594 BIC: 6586.
Df Model: 6
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1 0.0634 0.001 51.906 0.000 0.061 0.066
x2 -3.973e-05 4.11e-06 -9.668 0.000 -4.78e-05 -3.17e-05
x3 -0.0001 4.33e-06 -30.194 0.000 -0.000 -0.000
x4 0.0018 0.000 9.195 0.000 0.001 0.002
x5 0.0012 3.2e-05 37.995 0.000 0.001 0.001
x6 0.0013 0.001 1.238 0.216 -0.001 0.003
==============================================================================
Omnibus: 64.065 Durbin-Watson: 1.876
Prob(Omnibus): 0.000 Jarque-Bera (JB): 65.862
Skew: -0.285 Prob(JB): 4.99e-15
Kurtosis: 2.862 Cond. No. 1.60e+03
==============================================================================
Warnings:
[1] The condition number is large, 1.6e+03. This might indicate that there are
strong multicollinearity or other numerical problems.