In [1]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
In [2]:
from IPython.html.widgets import interact
Write a function char_probs that takes a string and computes the probabilities of each character in the string:
In [23]:
def char_probs(s):
"""Find the probabilities of the unique characters in the string s.
Parameters
----------
s : str
A string of characters.
Returns
-------
probs : dict
A dictionary whose keys are the unique characters in s and whose values
are the probabilities of those characters.
"""
a = len(s)
b = list(s)
dict1 = {'a':1, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6, 'g':7, 'h':8, 'i':9, 'j':10, 'k':11, 'l':12, 'm':13, 'n':14, 'o':15, 'p':16, 'q':17, 'r':18, 's':19, 't':20, 'u':21, 'v':22, 'w':23, 'x':24, 'y':25, 'z':26}
dict2 = {'a':0, 'b':0, 'c':0, 'd':0, 'e':0, 'f':0, 'g':0, 'h':0, 'i':0, 'j':0, 'k':0, 'l':0, 'm':0, 'n':0, 'o':0, 'p':0, 'q':0, 'r':0, 's':0, 't':0, 'u':0, 'v':0, 'w':0, 'x':0, 'y':0, 'z':0}
for item in b:
dict2[item] += 1
for key in dict2:
print
return dict2
print(char_probs('hibebe'))
In [19]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)
The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:
$$H = - \Sigma_i P_i \log_2(P_i)$$In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.
Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.
To compute the entropy, you should:
dict to a Numpy array of probabilities.np.log2, etc.) to compute the entropy.for or while loops in your code.
In [25]:
def entropy(d):
"""Compute the entropy of a dict d whose values are probabilities."""
d = {'1':2, '3':4}
for item in d:
print(item)
In [ ]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)
Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.
In [ ]:
# YOUR CODE HERE
raise NotImplementedError()
In [ ]:
assert True # use this for grading the pi digits histogram