In [0]:
features = [[300, 0,-0.05],
[250, 2, 0.05],
[800, 0, 0.2],
[400, 3, 0],
[250, 15, -0.8]]
In [0]:
features
In [0]:
labels = [[0],
[0],
[0],
[0],
[1]]
In [0]:
from sklearn.linear_model import LogisticRegression
In [0]:
model = LogisticRegression()
In [0]:
model.fit(features, labels)
In [0]:
model.predict([[400,16,-0.2]])
In [0]:
model.predict_proba([[400,16,-0.2]])
In [0]:
model.coef_
In [0]: