In [0]:
features = [[300, 0,-0.05],
            [250, 2, 0.05],
            [800, 0, 0.2],
            [400, 3, 0],
            [250, 15, -0.8]]

In [0]:
features

In [0]:
labels = [[0],
          [0],
          [0],
          [0],
          [1]]

In [0]:
from sklearn.linear_model import LogisticRegression

In [0]:
model = LogisticRegression()

In [0]:
model.fit(features, labels)

In [0]:
model.predict([[400,16,-0.2]])

In [0]:
model.predict_proba([[400,16,-0.2]])

In [0]:
model.coef_

In [0]: