In [1]:
'''An implementation of sequence to sequence learning for performing addition
        Input: "535+61"
        Output: "596"

Padding is handled by using a repeated sentinel character (space)
Input may optionally be inverted, shown to increase performance in many tasks in:
        "Learning to Execute" 
            http://arxiv.org/abs/1410.4615 and
        "Sequence to Sequence Learning with Neural Networks" 
            http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
Theoretically it introduces shorter term dependencies between source and target.

Two digits inverted:
+ One layer LSTM (128 HN), 5k training examples = 99% train/test accuracy in 55 epochs
Three digits inverted:
+ One layer LSTM (128 HN), 50k training examples = 99% train/test accuracy in 100 epochs
Four digits inverted:
+ One layer LSTM (128 HN), 400k training examples = 99% train/test accuracy in 20 epochs
Five digits inverted:
+ One layer LSTM (128 HN), 550k training examples = 99% train/test accuracy in 30 epochs
'''

from __future__ import print_function
from keras.models import Sequential
from keras import layers
import numpy as np
from six.moves import range


Using TensorFlow backend.

In [2]:
class CharacterTable(object):
    """Given a set of characters:
    + Encode them to a one hot integer representation
    + Decode the one hot integer representation to their character output
    + Decode a vector of probabilities to their character output
    """
    def __init__(self, chars):
        """Initialize character table.
        # Arguments
            chars: Characters that can appear in the input.
        """
        self.chars = sorted(set(chars))
        self.char_indices = dict((c, i) for i, c in enumerate(self.chars))
        self.indices_char = dict((i, c) for i, c in enumerate(self.chars))

    def encode(self, C, num_rows):
        """One hot encode given string C.
        # Arguments
            num_rows: Number of rows in the returned one hot encoding. This is
                used to keep the # of rows for each data the same.
        """
        x = np.zeros((num_rows, len(self.chars)))
        for i, c in enumerate(C):
            x[i, self.char_indices[c]] = 1
        return x

    def decode(self, x, calc_argmax=True):
        if calc_argmax:
            x = x.argmax(axis=-1)
        return ''.join(self.indices_char[x] for x in x)


class colors:
    ok = '\033[92m'
    fail = '\033[91m'
    close = '\033[0m'

# Parameters for the model and dataset.
TRAINING_SIZE = 50000
DIGITS = 3
INVERT = True

# Maximum length of input is 'int + int' (e.g., '345+678'). Maximum length of
# int is DIGITS.
MAXLEN = DIGITS + 1 + DIGITS

# All the numbers, plus sign and space for padding.
chars = '0123456789+ '
ctable = CharacterTable(chars)

questions = []
expected = []

In [3]:
seen = set()
print('Generating data...')
while len(questions) < TRAINING_SIZE:
    f = lambda: int(''.join(np.random.choice(list('0123456789'))
                    for i in range(np.random.randint(1, DIGITS + 1))))
    a, b = f(), f()
    
    # Skip any addition questions we've already seen
    # Also skip any such that x+Y == Y+x (hence the sorting).
    key = tuple(sorted((a, b)))
    if key in seen:
        continue
    
    seen.add(key)
    
    # Pad the data with spaces such that it is always MAXLEN.
    q = '{}+{}'.format(a, b)
    query = q + ' ' * (MAXLEN - len(q))
    ans = str(a + b)
    
    # Answers can be of maximum size DIGITS + 1.
    ans += ' ' * (DIGITS + 1 - len(ans))
    
    if INVERT:
        # Reverse the query, e.g., '12+345  ' becomes '  543+21'. (Note the
        # space used for padding.)
        query = query[::-1]
    
    questions.append(query)
    expected.append(ans)
print('Total addition questions:', len(questions))


Generating data...
Total addition questions: 50000
Vectorization...

In [4]:
print('Vectorization...')
x = np.zeros((len(questions), MAXLEN, len(chars)), dtype=np.bool)
y = np.zeros((len(questions), DIGITS + 1, len(chars)), dtype=np.bool)
for i, sentence in enumerate(questions):
    x[i] = ctable.encode(sentence, MAXLEN)
for i, sentence in enumerate(expected):
    y[i] = ctable.encode(sentence, DIGITS + 1)

# Shuffle (x, y) in unison as the later parts of x will almost all be larger digits.
indices = np.arange(len(y))
np.random.shuffle(indices)
x = x[indices]
y = y[indices]

# Explicitly set apart 10% for validation data that we never train over.
split_at = len(x) - len(x) // 10
(x_train, x_val) = x[:split_at], x[split_at:]
(y_train, y_val) = y[:split_at], y[split_at:]

print('Training Data:')
print(x_train.shape)
print(y_train.shape)

print('Validation Data:')
print(x_val.shape)
print(y_val.shape)


Vectorization...
Training Data:
(45000, 7, 12)
(45000, 4, 12)
Validation Data:
(5000, 7, 12)
(5000, 4, 12)

In [5]:
# Try replacing GRU, or SimpleRNN.
RNN = layers.LSTM
HIDDEN_SIZE = 128
BATCH_SIZE = 128
LAYERS = 1

print('Build model...')
model = Sequential()

# "Encode" the input sequence using an RNN, producing an output of HIDDEN_SIZE.
# Note: In a situation where your input sequences have a variable length,
# use input_shape=(None, num_feature).
model.add(RNN(HIDDEN_SIZE, input_shape=(MAXLEN, len(chars))))

# As the decoder RNN's input, repeatedly provide with the last hidden state of
# RNN for each time step. Repeat 'DIGITS + 1' times as that's the maximum
# length of output, e.g., when DIGITS=3, max output is 999+999=1998.
model.add(layers.RepeatVector(DIGITS + 1))

# The decoder RNN could be multiple layers stacked or a single layer.
for _ in range(LAYERS):
    # By setting return_sequences to True, return not only the last output but
    # all the outputs so far in the form of (num_samples, timesteps,
    # output_dim). This is necessary as TimeDistributed in the below expects
    # the first dimension to be the timesteps.
    model.add(RNN(HIDDEN_SIZE, return_sequences=True))

# Apply a dense layer to the every temporal slice of an input. For each of step
# of the output sequence, decide which character should be chosen.
model.add(layers.TimeDistributed(layers.Dense(len(chars))))
model.add(layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()

# Train the model each generation and show predictions against the validation
# dataset.
for iteration in range(1, 200):
    print()
    print('-' * 50)
    print('Iteration', iteration)
    model.fit(x_train, y_train,
              batch_size=BATCH_SIZE,
              epochs=1,
              validation_data=(x_val, y_val))
    # Select 10 samples from the validation set at random so we can visualize
    # errors.
    for i in range(10):
        ind = np.random.randint(0, len(x_val))
        rowx, rowy = x_val[np.array([ind])], y_val[np.array([ind])]
        preds = model.predict_classes(rowx, verbose=0)
        q = ctable.decode(rowx[0])
        correct = ctable.decode(rowy[0])
        guess = ctable.decode(preds[0], calc_argmax=False)
        print('Q', q[::-1] if INVERT else q)
        print('T', correct)
        if correct == guess:
            print(colors.ok + '☑' + colors.close, end=" ")
        else:
            print(colors.fail + '☒' + colors.close, end=" ")
        print(guess)
        print('---')


Build model...
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_1 (LSTM)                (None, 128)               72192     
_________________________________________________________________
repeat_vector_1 (RepeatVecto (None, 4, 128)            0         
_________________________________________________________________
lstm_2 (LSTM)                (None, 4, 128)            131584    
_________________________________________________________________
time_distributed_1 (TimeDist (None, 4, 12)             1548      
_________________________________________________________________
activation_1 (Activation)    (None, 4, 12)             0         
=================================================================
Total params: 205,324
Trainable params: 205,324
Non-trainable params: 0
_________________________________________________________________

--------------------------------------------------
Iteration 1
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 36s - loss: 1.8867 - acc: 0.3226 - val_loss: 1.8139 - val_acc: 0.3405
Q 560+53 
T 613 
 155 
---
Q 572+952
T 1524
 105 
---
Q 43+661 
T 704 
 155 
---
Q 607+33 
T 640 
 155 
---
Q 894+814
T 1708
 105 
---
Q 200+92 
T 292 
 125 
---
Q 93+732 
T 825 
 105 
---
Q 396+85 
T 481 
 105 
---
Q 396+865
T 1261
 101 
---
Q 13+856 
T 869 
 125 
---

--------------------------------------------------
Iteration 2
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 1.7386 - acc: 0.3577 - val_loss: 1.6697 - val_acc: 0.3798
Q 5+969  
T 974 
 104 
---
Q 288+86 
T 374 
 894 
---
Q 197+1  
T 198 
 112 
---
Q 975+38 
T 1013
 904 
---
Q 9+783  
T 792 
 904 
---
Q 97+80  
T 177 
 197 
---
Q 416+34 
T 450 
 449 
---
Q 385+8  
T 393 
 189 
---
Q 410+34 
T 444 
 449 
---
Q 597+364
T 961 
 104 
---

--------------------------------------------------
Iteration 3
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 1.5944 - acc: 0.4035 - val_loss: 1.5124 - val_acc: 0.4328
Q 92+17  
T 109 
 111 
---
Q 63+55  
T 118 
 669 
---
Q 76+204 
T 280 
 371 
---
Q 919+78 
T 997 
 901 
---
Q 52+617 
T 669 
 671 
---
Q 806+157
T 963 
 101 
---
Q 475+5  
T 480 
 551 
---
Q 937+93 
T 1030
 1041
---
Q 118+423
T 541 
 796 
---
Q 613+47 
T 660 
 674 
---

--------------------------------------------------
Iteration 4
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 1.4221 - acc: 0.4697 - val_loss: 1.3347 - val_acc: 0.4982
Q 750+47 
T 797 
 782 
---
Q 190+569
T 759 
 765 
---
Q 195+74 
T 269 
 255 
---
Q 681+860
T 1541
 1471
---
Q 675+2  
T 677 
 678 
---
Q 528+875
T 1403
 1311
---
Q 4+105  
T 109 
 111 
---
Q 60+314 
T 374 
 368 
---
Q 32+42  
T 74  
 37  
---
Q 464+7  
T 471 
 471 
---

--------------------------------------------------
Iteration 5
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 1.2639 - acc: 0.5319 - val_loss: 1.1940 - val_acc: 0.5631
Q 728+675
T 1403
 1422
---
Q 468+32 
T 500 
 499 
---
Q 5+718  
T 723 
 722 
---
Q 32+446 
T 478 
 479 
---
Q 0+776  
T 776 
 777 
---
Q 41+886 
T 927 
 999 
---
Q 560+39 
T 599 
 691 
---
Q 32+50  
T 82  
 60  
---
Q 595+1  
T 596 
 599 
---
Q 19+293 
T 312 
 219 
---

--------------------------------------------------
Iteration 6
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 1.1322 - acc: 0.5852 - val_loss: 1.0745 - val_acc: 0.6079
Q 23+800 
T 823 
 834 
---
Q 8+27   
T 35  
 27  
---
Q 894+814
T 1708
 1700
---
Q 721+88 
T 809 
 800 
---
Q 515+98 
T 613 
 600 
---
Q 314+0  
T 314 
 313 
---
Q 40+240 
T 280 
 362 
---
Q 892+396
T 1288
 1256
---
Q 927+862
T 1789
 1710
---
Q 119+363
T 482 
 502 
---

--------------------------------------------------
Iteration 7
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 1.0067 - acc: 0.6363 - val_loss: 0.9651 - val_acc: 0.6488
Q 862+106
T 968 
 909 
---
Q 252+740
T 992 
 900 
---
Q 408+96 
T 504 
 596 
---
Q 32+19  
T 51  
 44  
---
Q 48+679 
T 727 
 719 
---
Q 5+529  
T 534 
 539 
---
Q 1+762  
T 763 
 764 
---
Q 464+5  
T 469 
 474 
---
Q 1+714  
T 715 
 715 
---
Q 178+43 
T 221 
 229 
---

--------------------------------------------------
Iteration 8
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 29s - loss: 0.9057 - acc: 0.6756 - val_loss: 0.8744 - val_acc: 0.6818
Q 20+729 
T 749 
 759 
---
Q 451+37 
T 488 
 489 
---
Q 48+890 
T 938 
 939 
---
Q 908+456
T 1364
 1455
---
Q 315+96 
T 411 
 410 
---
Q 764+17 
T 781 
 777 
---
Q 229+432
T 661 
 662 
---
Q 12+262 
T 274 
 272 
---
Q 992+214
T 1206
 1200
---
Q 38+14  
T 52  
 52  
---

--------------------------------------------------
Iteration 9
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 29s - loss: 0.8201 - acc: 0.7100 - val_loss: 0.8091 - val_acc: 0.7077
Q 37+307 
T 344 
 341 
---
Q 602+12 
T 614 
 615 
---
Q 949+685
T 1634
 1636
---
Q 798+16 
T 814 
 810 
---
Q 92+901 
T 993 
 990 
---
Q 834+972
T 1806
 1800
---
Q 314+16 
T 330 
 330 
---
Q 575+22 
T 597 
 699 
---
Q 61+916 
T 977 
 976 
---
Q 289+52 
T 341 
 340 
---

--------------------------------------------------
Iteration 10
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.7416 - acc: 0.7404 - val_loss: 0.7110 - val_acc: 0.7510
Q 491+1  
T 492 
 493 
---
Q 650+7  
T 657 
 657 
---
Q 505+259
T 764 
 756 
---
Q 623+296
T 919 
 921 
---
Q 602+456
T 1058
 1053
---
Q 97+954 
T 1051
 1046
---
Q 29+83  
T 112 
 119 
---
Q 667+549
T 1216
 1212
---
Q 3+752  
T 755 
 754 
---
Q 71+36  
T 107 
 108 
---

--------------------------------------------------
Iteration 11
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.6478 - acc: 0.7678 - val_loss: 0.5834 - val_acc: 0.7879
Q 37+877 
T 914 
 918 
---
Q 17+767 
T 784 
 786 
---
Q 99+475 
T 574 
 579 
---
Q 51+279 
T 330 
 320 
---
Q 476+58 
T 534 
 534 
---
Q 135+53 
T 188 
 188 
---
Q 843+255
T 1098
 1098
---
Q 386+18 
T 404 
 404 
---
Q 9+120  
T 129 
 119 
---
Q 426+375
T 801 
 800 
---

--------------------------------------------------
Iteration 12
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 33s - loss: 0.4853 - acc: 0.8297 - val_loss: 0.4348 - val_acc: 0.8463
Q 855+35 
T 890 
 890 
---
Q 282+4  
T 286 
 286 
---
Q 215+213
T 428 
 328 
---
Q 493+59 
T 552 
 551 
---
Q 533+543
T 1076
 1076
---
Q 589+9  
T 598 
 596 
---
Q 764+17 
T 781 
 782 
---
Q 52+44  
T 96  
 87  
---
Q 59+738 
T 797 
 786 
---
Q 927+862
T 1789
 1799
---

--------------------------------------------------
Iteration 13
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 40s - loss: 0.3459 - acc: 0.8937 - val_loss: 0.3122 - val_acc: 0.9039
Q 181+227
T 408 
 308 
---
Q 829+366
T 1195
 1185
---
Q 72+140 
T 212 
 212 
---
Q 312+211
T 523 
 423 
---
Q 3+530  
T 533 
 433 
---
Q 334+694
T 1028
 1028
---
Q 3+31   
T 34  
 34  
---
Q 64+933 
T 997 
 998 
---
Q 8+969  
T 977 
 977 
---
Q 231+244
T 475 
 476 
---

--------------------------------------------------
Iteration 14
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 41s - loss: 0.2491 - acc: 0.9356 - val_loss: 0.2204 - val_acc: 0.9428
Q 237+540
T 777 
 776 
---
Q 659+513
T 1172
 1172
---
Q 16+632 
T 648 
 648 
---
Q 603+7  
T 610 
 600 
---
Q 85+582 
T 667 
 667 
---
Q 65+946 
T 1011
 1011
---
Q 359+41 
T 400 
 300 
---
Q 68+12  
T 80  
 70  
---
Q 569+48 
T 617 
 617 
---
Q 67+17  
T 84  
 84  
---

--------------------------------------------------
Iteration 15
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 46s - loss: 0.1786 - acc: 0.9610 - val_loss: 0.1489 - val_acc: 0.9688
Q 221+460
T 681 
 681 
---
Q 67+50  
T 117 
 117 
---
Q 113+480
T 593 
 693 
---
Q 1+860  
T 861 
 861 
---
Q 58+733 
T 791 
 791 
---
Q 947+4  
T 951 
 951 
---
Q 525+39 
T 564 
 564 
---
Q 820+673
T 1493
 1593
---
Q 94+806 
T 900 
 991 
---
Q 14+20  
T 34  
 34  
---

--------------------------------------------------
Iteration 16
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 49s - loss: 0.1303 - acc: 0.9736 - val_loss: 0.1196 - val_acc: 0.9748
Q 821+707
T 1528
 1528
---
Q 557+159
T 716 
 716 
---
Q 594+9  
T 603 
 603 
---
Q 355+13 
T 368 
 368 
---
Q 5+718  
T 723 
 723 
---
Q 539+59 
T 598 
 598 
---
Q 418+516
T 934 
 934 
---
Q 190+784
T 974 
 974 
---
Q 158+35 
T 193 
 193 
---
Q 9+52   
T 61  
 51  
---

--------------------------------------------------
Iteration 17
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 49s - loss: 0.0954 - acc: 0.9832 - val_loss: 0.0942 - val_acc: 0.9802
Q 849+332
T 1181
 1181
---
Q 128+554
T 682 
 682 
---
Q 163+11 
T 174 
 174 
---
Q 89+118 
T 207 
 207 
---
Q 682+392
T 1074
 1074
---
Q 56+944 
T 1000
 1000
---
Q 438+7  
T 445 
 445 
---
Q 16+997 
T 1013
 1013
---
Q 162+3  
T 165 
 165 
---
Q 74+400 
T 474 
 474 
---

--------------------------------------------------
Iteration 18
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 50s - loss: 0.0861 - acc: 0.9823 - val_loss: 0.0737 - val_acc: 0.9859
Q 6+646  
T 652 
 652 
---
Q 519+73 
T 592 
 592 
---
Q 85+506 
T 591 
 591 
---
Q 67+18  
T 85  
 85  
---
Q 809+160
T 969 
 979 
---
Q 57+396 
T 453 
 453 
---
Q 797+545
T 1342
 1342
---
Q 870+741
T 1611
 1611
---
Q 673+777
T 1450
 1450
---
Q 42+292 
T 334 
 334 
---

--------------------------------------------------
Iteration 19
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 50s - loss: 0.0609 - acc: 0.9903 - val_loss: 0.0592 - val_acc: 0.9896
Q 746+41 
T 787 
 787 
---
Q 140+73 
T 213 
 213 
---
Q 91+28  
T 119 
 119 
---
Q 14+20  
T 34  
 34  
---
Q 477+426
T 903 
 903 
---
Q 575+46 
T 621 
 621 
---
Q 48+34  
T 82  
 82  
---
Q 736+77 
T 813 
 813 
---
Q 283+7  
T 290 
 290 
---
Q 333+276
T 609 
 509 
---

--------------------------------------------------
Iteration 20
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 48s - loss: 0.0734 - acc: 0.9828 - val_loss: 0.0674 - val_acc: 0.9841
Q 51+810 
T 861 
 861 
---
Q 207+86 
T 293 
 293 
---
Q 4+671  
T 675 
 675 
---
Q 138+939
T 1077
 1077
---
Q 797+587
T 1384
 1384
---
Q 73+967 
T 1040
 1040
---
Q 49+19  
T 68  
 58  
---
Q 135+486
T 621 
 621 
---
Q 718+623
T 1341
 1341
---
Q 12+600 
T 612 
 612 
---

--------------------------------------------------
Iteration 21
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 0.0517 - acc: 0.9899 - val_loss: 0.0930 - val_acc: 0.9689
Q 98+224 
T 322 
 322 
---
Q 68+29  
T 97  
 97  
---
Q 39+288 
T 327 
 327 
---
Q 3+707  
T 710 
 710 
---
Q 68+29  
T 97  
 97  
---
Q 91+633 
T 724 
 724 
---
Q 952+31 
T 983 
 983 
---
Q 162+287
T 449 
 449 
---
Q 692+796
T 1488
 1588
---
Q 3+609  
T 612 
 612 
---

--------------------------------------------------
Iteration 22
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 33s - loss: 0.0412 - acc: 0.9927 - val_loss: 0.0392 - val_acc: 0.9922
Q 624+598
T 1222
 1222
---
Q 889+26 
T 915 
 915 
---
Q 10+69  
T 79  
 79  
---
Q 959+16 
T 975 
 975 
---
Q 650+7  
T 657 
 657 
---
Q 333+829
T 1162
 1162
---
Q 185+820
T 1005
 9005
---
Q 221+66 
T 287 
 287 
---
Q 317+8  
T 325 
 325 
---
Q 395+786
T 1181
 1181
---

--------------------------------------------------
Iteration 23
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0310 - acc: 0.9955 - val_loss: 0.0412 - val_acc: 0.9903
Q 7+120  
T 127 
 137 
---
Q 828+776
T 1604
 1604
---
Q 357+290
T 647 
 647 
---
Q 18+102 
T 120 
 120 
---
Q 73+796 
T 869 
 869 
---
Q 143+182
T 325 
 325 
---
Q 0+177  
T 177 
 177 
---
Q 820+36 
T 856 
 856 
---
Q 32+267 
T 299 
 299 
---
Q 309+120
T 429 
 429 
---

--------------------------------------------------
Iteration 24
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0406 - acc: 0.9907 - val_loss: 0.0426 - val_acc: 0.9897
Q 28+48  
T 76  
 76  
---
Q 97+770 
T 867 
 867 
---
Q 19+881 
T 900 
 900 
---
Q 221+460
T 681 
 681 
---
Q 67+469 
T 536 
 536 
---
Q 0+871  
T 871 
 871 
---
Q 936+12 
T 948 
 948 
---
Q 74+925 
T 999 
 999 
---
Q 566+389
T 955 
 955 
---
Q 53+937 
T 990 
 990 
---

--------------------------------------------------
Iteration 25
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0218 - acc: 0.9972 - val_loss: 0.0228 - val_acc: 0.9969
Q 867+803
T 1670
 1670
---
Q 40+245 
T 285 
 285 
---
Q 417+259
T 676 
 676 
---
Q 852+9  
T 861 
 861 
---
Q 663+469
T 1132
 1132
---
Q 66+58  
T 124 
 124 
---
Q 113+51 
T 164 
 164 
---
Q 967+927
T 1894
 1894
---
Q 0+602  
T 602 
 602 
---
Q 221+84 
T 305 
 305 
---

--------------------------------------------------
Iteration 26
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0180 - acc: 0.9979 - val_loss: 0.0231 - val_acc: 0.9949
Q 670+88 
T 758 
 758 
---
Q 510+25 
T 535 
 535 
---
Q 622+86 
T 708 
 708 
---
Q 3+887  
T 890 
 890 
---
Q 240+11 
T 251 
 251 
---
Q 71+2   
T 73  
 73  
---
Q 371+24 
T 395 
 395 
---
Q 1+293  
T 294 
 294 
---
Q 3+908  
T 911 
 911 
---
Q 79+151 
T 230 
 230 
---

--------------------------------------------------
Iteration 27
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0489 - acc: 0.9864 - val_loss: 0.0233 - val_acc: 0.9952
Q 661+5  
T 666 
 666 
---
Q 201+58 
T 259 
 259 
---
Q 985+905
T 1890
 1890
---
Q 94+17  
T 111 
 111 
---
Q 531+79 
T 610 
 610 
---
Q 45+759 
T 804 
 804 
---
Q 30+481 
T 511 
 511 
---
Q 895+8  
T 903 
 903 
---
Q 315+835
T 1150
 1150
---
Q 645+6  
T 651 
 651 
---

--------------------------------------------------
Iteration 28
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0126 - acc: 0.9990 - val_loss: 0.0179 - val_acc: 0.9968
Q 371+24 
T 395 
 395 
---
Q 188+83 
T 271 
 271 
---
Q 61+916 
T 977 
 977 
---
Q 904+854
T 1758
 1758
---
Q 629+530
T 1159
 1159
---
Q 662+765
T 1427
 1427
---
Q 981+225
T 1206
 1206
---
Q 568+7  
T 575 
 575 
---
Q 829+68 
T 897 
 897 
---
Q 258+9  
T 267 
 267 
---

--------------------------------------------------
Iteration 29
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 29s - loss: 0.0187 - acc: 0.9962 - val_loss: 0.0305 - val_acc: 0.9922
Q 143+194
T 337 
 337 
---
Q 945+1  
T 946 
 946 
---
Q 72+341 
T 413 
 413 
---
Q 655+680
T 1335
 1335
---
Q 249+2  
T 251 
 251 
---
Q 402+209
T 611 
 611 
---
Q 99+94  
T 193 
 193 
---
Q 225+99 
T 324 
 324 
---
Q 4+753  
T 757 
 757 
---
Q 25+344 
T 369 
 369 
---

--------------------------------------------------
Iteration 30
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0418 - acc: 0.9880 - val_loss: 0.0308 - val_acc: 0.9916
Q 353+47 
T 400 
 400 
---
Q 50+517 
T 567 
 567 
---
Q 75+5   
T 80  
 80  
---
Q 902+6  
T 908 
 908 
---
Q 2+889  
T 891 
 891 
---
Q 799+940
T 1739
 1749
---
Q 352+802
T 1154
 1154
---
Q 57+583 
T 640 
 640 
---
Q 9+858  
T 867 
 867 
---
Q 969+262
T 1231
 1231
---

--------------------------------------------------
Iteration 31
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0109 - acc: 0.9989 - val_loss: 0.0126 - val_acc: 0.9980
Q 190+569
T 759 
 759 
---
Q 44+359 
T 403 
 403 
---
Q 845+0  
T 845 
 845 
---
Q 236+9  
T 245 
 245 
---
Q 23+249 
T 272 
 272 
---
Q 117+550
T 667 
 667 
---
Q 661+63 
T 724 
 724 
---
Q 738+465
T 1203
 1203
---
Q 92+750 
T 842 
 842 
---
Q 787+99 
T 886 
 886 
---

--------------------------------------------------
Iteration 32
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0084 - acc: 0.9992 - val_loss: 0.0184 - val_acc: 0.9956
Q 79+842 
T 921 
 921 
---
Q 99+94  
T 193 
 193 
---
Q 746+41 
T 787 
 787 
---
Q 941+64 
T 1005
 1005
---
Q 1+639  
T 640 
 640 
---
Q 68+65  
T 133 
 133 
---
Q 57+390 
T 447 
 447 
---
Q 559+805
T 1364
 1364
---
Q 256+70 
T 326 
 326 
---
Q 775+975
T 1750
 1750
---

--------------------------------------------------
Iteration 33
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0285 - acc: 0.9919 - val_loss: 0.1233 - val_acc: 0.9611
Q 80+139 
T 219 
 219 
---
Q 59+738 
T 797 
 797 
---
Q 62+329 
T 391 
 391 
---
Q 799+55 
T 854 
 844 
---
Q 178+851
T 1029
 1029
---
Q 15+119 
T 134 
 134 
---
Q 352+240
T 592 
 592 
---
Q 696+618
T 1314
 1314
---
Q 480+804
T 1284
 1284
---
Q 819+182
T 1001
 1001
---

--------------------------------------------------
Iteration 34
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0235 - acc: 0.9939 - val_loss: 0.0112 - val_acc: 0.9979
Q 3+970  
T 973 
 973 
---
Q 6+690  
T 696 
 696 
---
Q 20+12  
T 32  
 32  
---
Q 67+333 
T 400 
 400 
---
Q 630+543
T 1173
 1173
---
Q 205+2  
T 207 
 207 
---
Q 618+39 
T 657 
 657 
---
Q 184+739
T 923 
 923 
---
Q 188+832
T 1020
 1020
---
Q 12+121 
T 133 
 133 
---

--------------------------------------------------
Iteration 35
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0057 - acc: 0.9996 - val_loss: 0.0091 - val_acc: 0.9982
Q 205+60 
T 265 
 265 
---
Q 589+83 
T 672 
 672 
---
Q 31+211 
T 242 
 242 
---
Q 1+274  
T 275 
 275 
---
Q 151+74 
T 225 
 225 
---
Q 48+452 
T 500 
 500 
---
Q 92+480 
T 572 
 572 
---
Q 551+55 
T 606 
 606 
---
Q 755+71 
T 826 
 826 
---
Q 207+396
T 603 
 603 
---

--------------------------------------------------
Iteration 36
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0048 - acc: 0.9998 - val_loss: 0.0085 - val_acc: 0.9986
Q 237+540
T 777 
 777 
---
Q 92+878 
T 970 
 970 
---
Q 20+901 
T 921 
 921 
---
Q 3+765  
T 768 
 768 
---
Q 4+899  
T 903 
 903 
---
Q 62+248 
T 310 
 310 
---
Q 751+17 
T 768 
 768 
---
Q 19+881 
T 900 
 900 
---
Q 846+388
T 1234
 1234
---
Q 97+999 
T 1096
 1096
---

--------------------------------------------------
Iteration 37
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 0.0182 - acc: 0.9951 - val_loss: 0.1158 - val_acc: 0.9597
Q 273+98 
T 371 
 371 
---
Q 787+76 
T 863 
 863 
---
Q 598+7  
T 605 
 605 
---
Q 143+1  
T 144 
 144 
---
Q 140+73 
T 213 
 213 
---
Q 94+68  
T 162 
 162 
---
Q 184+739
T 923 
 923 
---
Q 175+16 
T 191 
 191 
---
Q 21+89  
T 110 
 110 
---
Q 31+496 
T 527 
 527 
---

--------------------------------------------------
Iteration 38
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0273 - acc: 0.9923 - val_loss: 0.0110 - val_acc: 0.9976
Q 5+128  
T 133 
 133 
---
Q 174+15 
T 189 
 189 
---
Q 231+51 
T 282 
 282 
---
Q 994+506
T 1500
 1500
---
Q 360+157
T 517 
 517 
---
Q 444+640
T 1084
 1084
---
Q 996+810
T 1806
 1806
---
Q 43+5   
T 48  
 48  
---
Q 28+807 
T 835 
 835 
---
Q 358+923
T 1281
 1281
---

--------------------------------------------------
Iteration 39
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0043 - acc: 0.9998 - val_loss: 0.0066 - val_acc: 0.9990
Q 205+2  
T 207 
 207 
---
Q 847+913
T 1760
 1760
---
Q 88+303 
T 391 
 391 
---
Q 34+1   
T 35  
 35  
---
Q 423+135
T 558 
 558 
---
Q 733+3  
T 736 
 736 
---
Q 65+721 
T 786 
 786 
---
Q 118+137
T 255 
 255 
---
Q 34+65  
T 99  
 99  
---
Q 845+411
T 1256
 1256
---

--------------------------------------------------
Iteration 40
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0032 - acc: 0.9999 - val_loss: 0.0062 - val_acc: 0.9991
Q 160+416
T 576 
 576 
---
Q 314+25 
T 339 
 339 
---
Q 7+970  
T 977 
 977 
---
Q 72+24  
T 96  
 96  
---
Q 86+840 
T 926 
 926 
---
Q 9+505  
T 514 
 514 
---
Q 1+891  
T 892 
 892 
---
Q 763+15 
T 778 
 778 
---
Q 61+88  
T 149 
 149 
---
Q 220+319
T 539 
 539 
---

--------------------------------------------------
Iteration 41
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0029 - acc: 0.9999 - val_loss: 0.0062 - val_acc: 0.9990
Q 408+511
T 919 
 919 
---
Q 6+133  
T 139 
 139 
---
Q 30+204 
T 234 
 234 
---
Q 140+386
T 526 
 526 
---
Q 84+19  
T 103 
 103 
---
Q 96+595 
T 691 
 691 
---
Q 40+729 
T 769 
 769 
---
Q 40+69  
T 109 
 109 
---
Q 238+39 
T 277 
 277 
---
Q 841+225
T 1066
 1066
---

--------------------------------------------------
Iteration 42
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0292 - acc: 0.9915 - val_loss: 0.1390 - val_acc: 0.9573
Q 158+35 
T 193 
 193 
---
Q 935+12 
T 947 
 947 
---
Q 556+0  
T 556 
 556 
---
Q 590+237
T 827 
 827 
---
Q 487+230
T 717 
 717 
---
Q 16+656 
T 672 
 672 
---
Q 80+64  
T 144 
 144 
---
Q 449+902
T 1351
 1351
---
Q 989+742
T 1731
 1721
---
Q 19+862 
T 881 
 881 
---

--------------------------------------------------
Iteration 43
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0205 - acc: 0.9941 - val_loss: 0.0164 - val_acc: 0.9954
Q 725+789
T 1514
 1514
---
Q 563+18 
T 581 
 581 
---
Q 1+274  
T 275 
 275 
---
Q 190+138
T 328 
 328 
---
Q 2+373  
T 375 
 375 
---
Q 0+221  
T 221 
 221 
---
Q 14+20  
T 34  
 34  
---
Q 28+970 
T 998 
 998 
---
Q 37+877 
T 914 
 914 
---
Q 720+660
T 1380
 1380
---

--------------------------------------------------
Iteration 44
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0049 - acc: 0.9994 - val_loss: 0.0067 - val_acc: 0.9987
Q 672+990
T 1662
 1662
---
Q 56+18  
T 74  
 74  
---
Q 98+842 
T 940 
 940 
---
Q 65+946 
T 1011
 1011
---
Q 47+823 
T 870 
 870 
---
Q 6+819  
T 825 
 825 
---
Q 844+396
T 1240
 1240
---
Q 462+915
T 1377
 1377
---
Q 156+64 
T 220 
 220 
---
Q 774+619
T 1393
 1393
---

--------------------------------------------------
Iteration 45
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0025 - acc: 0.9999 - val_loss: 0.0053 - val_acc: 0.9990
Q 32+267 
T 299 
 299 
---
Q 983+65 
T 1048
 1048
---
Q 722+49 
T 771 
 771 
---
Q 2+372  
T 374 
 374 
---
Q 420+3  
T 423 
 423 
---
Q 113+6  
T 119 
 119 
---
Q 691+490
T 1181
 1181
---
Q 3+845  
T 848 
 848 
---
Q 80+439 
T 519 
 519 
---
Q 75+5   
T 80  
 80  
---

--------------------------------------------------
Iteration 46
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0034 - acc: 0.9995 - val_loss: 0.0122 - val_acc: 0.9963
Q 603+113
T 716 
 716 
---
Q 57+72  
T 129 
 129 
---
Q 11+670 
T 681 
 681 
---
Q 273+11 
T 284 
 284 
---
Q 706+38 
T 744 
 744 
---
Q 3+362  
T 365 
 366 
---
Q 35+127 
T 162 
 162 
---
Q 62+329 
T 391 
 391 
---
Q 28+361 
T 389 
 389 
---
Q 5+718  
T 723 
 723 
---

--------------------------------------------------
Iteration 47
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0588 - acc: 0.9823 - val_loss: 0.0106 - val_acc: 0.9974
Q 622+86 
T 708 
 708 
---
Q 7+435  
T 442 
 442 
---
Q 193+5  
T 198 
 198 
---
Q 15+933 
T 948 
 948 
---
Q 58+83  
T 141 
 141 
---
Q 511+4  
T 515 
 515 
---
Q 3+977  
T 980 
 980 
---
Q 416+34 
T 450 
 450 
---
Q 401+86 
T 487 
 487 
---
Q 83+413 
T 496 
 496 
---

--------------------------------------------------
Iteration 48
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0035 - acc: 0.9998 - val_loss: 0.0067 - val_acc: 0.9985
Q 271+22 
T 293 
 293 
---
Q 556+800
T 1356
 1356
---
Q 267+0  
T 267 
 267 
---
Q 68+840 
T 908 
 908 
---
Q 75+446 
T 521 
 521 
---
Q 663+4  
T 667 
 667 
---
Q 288+107
T 395 
 395 
---
Q 943+79 
T 1022
 1022
---
Q 6+989  
T 995 
 995 
---
Q 5+310  
T 315 
 315 
---

--------------------------------------------------
Iteration 49
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0022 - acc: 1.0000 - val_loss: 0.0050 - val_acc: 0.9990
Q 374+730
T 1104
 1104
---
Q 9+34   
T 43  
 43  
---
Q 8+635  
T 643 
 643 
---
Q 797+2  
T 799 
 799 
---
Q 89+198 
T 287 
 287 
---
Q 2+469  
T 471 
 471 
---
Q 325+804
T 1129
 1129
---
Q 551+55 
T 606 
 606 
---
Q 469+846
T 1315
 1315
---
Q 196+43 
T 239 
 239 
---

--------------------------------------------------
Iteration 50
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0019 - acc: 1.0000 - val_loss: 0.0045 - val_acc: 0.9990
Q 25+0   
T 25  
 25  
---
Q 992+90 
T 1082
 1082
---
Q 23+984 
T 1007
 1007
---
Q 198+566
T 764 
 764 
---
Q 71+402 
T 473 
 473 
---
Q 464+5  
T 469 
 469 
---
Q 51+480 
T 531 
 531 
---
Q 257+37 
T 294 
 294 
---
Q 278+59 
T 337 
 337 
---
Q 693+811
T 1504
 1504
---

--------------------------------------------------
Iteration 51
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0016 - acc: 1.0000 - val_loss: 0.0043 - val_acc: 0.9990
Q 13+723 
T 736 
 736 
---
Q 468+32 
T 500 
 500 
---
Q 2+469  
T 471 
 471 
---
Q 88+962 
T 1050
 1050
---
Q 233+5  
T 238 
 238 
---
Q 897+78 
T 975 
 975 
---
Q 594+530
T 1124
 1124
---
Q 21+362 
T 383 
 383 
---
Q 109+375
T 484 
 484 
---
Q 37+99  
T 136 
 136 
---

--------------------------------------------------
Iteration 52
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0016 - acc: 1.0000 - val_loss: 0.0040 - val_acc: 0.9992
Q 17+876 
T 893 
 893 
---
Q 257+4  
T 261 
 261 
---
Q 329+795
T 1124
 1124
---
Q 9+312  
T 321 
 321 
---
Q 172+15 
T 187 
 187 
---
Q 43+925 
T 968 
 968 
---
Q 16+760 
T 776 
 776 
---
Q 9+605  
T 614 
 614 
---
Q 567+647
T 1214
 1214
---
Q 72+171 
T 243 
 243 
---

--------------------------------------------------
Iteration 53
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0013 - acc: 1.0000 - val_loss: 0.0038 - val_acc: 0.9993
Q 650+7  
T 657 
 657 
---
Q 223+145
T 368 
 368 
---
Q 489+197
T 686 
 686 
---
Q 672+8  
T 680 
 680 
---
Q 951+4  
T 955 
 955 
---
Q 28+4   
T 32  
 32  
---
Q 38+993 
T 1031
 1031
---
Q 110+0  
T 110 
 110 
---
Q 998+704
T 1702
 1702
---
Q 79+140 
T 219 
 219 
---

--------------------------------------------------
Iteration 54
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0319 - acc: 0.9904 - val_loss: 0.1253 - val_acc: 0.9572
Q 382+47 
T 429 
 429 
---
Q 9+929  
T 938 
 938 
---
Q 185+820
T 1005
 995 
---
Q 396+71 
T 467 
 467 
---
Q 0+62   
T 62  
 62  
---
Q 46+821 
T 867 
 857 
---
Q 50+404 
T 454 
 454 
---
Q 8+396  
T 404 
 404 
---
Q 410+227
T 637 
 637 
---
Q 23+984 
T 1007
 1007
---

--------------------------------------------------
Iteration 55
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0179 - acc: 0.9948 - val_loss: 0.0065 - val_acc: 0.9984
Q 210+114
T 324 
 324 
---
Q 41+886 
T 927 
 927 
---
Q 801+29 
T 830 
 830 
---
Q 52+669 
T 721 
 721 
---
Q 31+131 
T 162 
 162 
---
Q 873+27 
T 900 
 900 
---
Q 718+77 
T 795 
 795 
---
Q 34+174 
T 208 
 208 
---
Q 99+298 
T 397 
 397 
---
Q 315+823
T 1138
 1138
---

--------------------------------------------------
Iteration 56
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0020 - acc: 0.9999 - val_loss: 0.0049 - val_acc: 0.9990
Q 704+14 
T 718 
 718 
---
Q 892+964
T 1856
 1856
---
Q 888+74 
T 962 
 962 
---
Q 82+211 
T 293 
 293 
---
Q 67+17  
T 84  
 84  
---
Q 72+628 
T 700 
 700 
---
Q 93+786 
T 879 
 879 
---
Q 8+450  
T 458 
 458 
---
Q 25+73  
T 98  
 98  
---
Q 51+630 
T 681 
 681 
---

--------------------------------------------------
Iteration 57
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0015 - acc: 1.0000 - val_loss: 0.0035 - val_acc: 0.9992
Q 529+82 
T 611 
 611 
---
Q 190+12 
T 202 
 202 
---
Q 9+34   
T 43  
 43  
---
Q 93+104 
T 197 
 197 
---
Q 40+97  
T 137 
 137 
---
Q 269+731
T 1000
 1000
---
Q 39+850 
T 889 
 889 
---
Q 195+139
T 334 
 334 
---
Q 74+551 
T 625 
 625 
---
Q 5+529  
T 534 
 534 
---

--------------------------------------------------
Iteration 58
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 29s - loss: 0.0012 - acc: 1.0000 - val_loss: 0.0031 - val_acc: 0.9996
Q 24+869 
T 893 
 893 
---
Q 268+53 
T 321 
 321 
---
Q 965+0  
T 965 
 965 
---
Q 80+139 
T 219 
 219 
---
Q 2+819  
T 821 
 821 
---
Q 181+144
T 325 
 325 
---
Q 949+567
T 1516
 1516
---
Q 318+801
T 1119
 1119
---
Q 71+212 
T 283 
 283 
---
Q 529+631
T 1160
 1160
---

--------------------------------------------------
Iteration 59
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0010 - acc: 1.0000 - val_loss: 0.0033 - val_acc: 0.9994
Q 8+650  
T 658 
 658 
---
Q 39+340 
T 379 
 379 
---
Q 0+130  
T 130 
 130 
---
Q 634+13 
T 647 
 647 
---
Q 38+133 
T 171 
 171 
---
Q 58+587 
T 645 
 645 
---
Q 86+302 
T 388 
 388 
---
Q 836+148
T 984 
 984 
---
Q 767+34 
T 801 
 801 
---
Q 73+336 
T 409 
 409 
---

--------------------------------------------------
Iteration 60
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0011 - acc: 1.0000 - val_loss: 0.0050 - val_acc: 0.9987
Q 241+67 
T 308 
 308 
---
Q 807+0  
T 807 
 807 
---
Q 59+282 
T 341 
 341 
---
Q 966+94 
T 1060
 1060
---
Q 127+646
T 773 
 773 
---
Q 35+98  
T 133 
 133 
---
Q 704+47 
T 751 
 751 
---
Q 71+661 
T 732 
 732 
---
Q 681+7  
T 688 
 688 
---
Q 5+125  
T 130 
 130 
---

--------------------------------------------------
Iteration 61
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0486 - acc: 0.9855 - val_loss: 0.0062 - val_acc: 0.9986
Q 47+333 
T 380 
 380 
---
Q 822+500
T 1322
 1322
---
Q 25+17  
T 42  
 42  
---
Q 117+12 
T 129 
 129 
---
Q 366+290
T 656 
 656 
---
Q 873+924
T 1797
 1797
---
Q 14+20  
T 34  
 34  
---
Q 29+386 
T 415 
 415 
---
Q 417+3  
T 420 
 420 
---
Q 627+617
T 1244
 1244
---

--------------------------------------------------
Iteration 62
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0022 - acc: 0.9999 - val_loss: 0.0041 - val_acc: 0.9992
Q 579+72 
T 651 
 651 
---
Q 960+44 
T 1004
 1004
---
Q 529+59 
T 588 
 588 
---
Q 590+8  
T 598 
 598 
---
Q 622+4  
T 626 
 626 
---
Q 352+809
T 1161
 1161
---
Q 75+74  
T 149 
 149 
---
Q 489+90 
T 579 
 579 
---
Q 46+313 
T 359 
 359 
---
Q 138+11 
T 149 
 149 
---

--------------------------------------------------
Iteration 63
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0015 - acc: 0.9999 - val_loss: 0.0030 - val_acc: 0.9994
Q 482+5  
T 487 
 487 
---
Q 47+510 
T 557 
 557 
---
Q 325+804
T 1129
 1129
---
Q 253+873
T 1126
 1126
---
Q 616+33 
T 649 
 649 
---
Q 926+310
T 1236
 1236
---
Q 5+890  
T 895 
 895 
---
Q 630+20 
T 650 
 650 
---
Q 535+37 
T 572 
 572 
---
Q 52+402 
T 454 
 454 
---

--------------------------------------------------
Iteration 64
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0011 - acc: 1.0000 - val_loss: 0.0028 - val_acc: 0.9994
Q 523+376
T 899 
 899 
---
Q 64+310 
T 374 
 374 
---
Q 15+219 
T 234 
 234 
---
Q 400+37 
T 437 
 437 
---
Q 597+364
T 961 
 961 
---
Q 90+506 
T 596 
 596 
---
Q 890+600
T 1490
 1490
---
Q 155+62 
T 217 
 217 
---
Q 764+17 
T 781 
 781 
---
Q 64+933 
T 997 
 997 
---

--------------------------------------------------
Iteration 65
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 9.1291e-04 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9994
Q 331+304
T 635 
 635 
---
Q 1+125  
T 126 
 126 
---
Q 5+128  
T 133 
 133 
---
Q 728+675
T 1403
 1403
---
Q 217+370
T 587 
 587 
---
Q 327+9  
T 336 
 336 
---
Q 46+472 
T 518 
 518 
---
Q 558+18 
T 576 
 576 
---
Q 590+115
T 705 
 705 
---
Q 72+140 
T 212 
 212 
---

--------------------------------------------------
Iteration 66
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0054 - acc: 0.9986 - val_loss: 0.1097 - val_acc: 0.9686
Q 8+763  
T 771 
 772 
---
Q 81+973 
T 1054
 1054
---
Q 53+786 
T 839 
 839 
---
Q 159+44 
T 203 
 203 
---
Q 147+797
T 944 
 933 
---
Q 179+0  
T 179 
 189 
---
Q 113+439
T 552 
 552 
---
Q 31+794 
T 825 
 825 
---
Q 538+736
T 1274
 1274
---
Q 494+108
T 602 
 602 
---

--------------------------------------------------
Iteration 67
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0326 - acc: 0.9903 - val_loss: 0.0047 - val_acc: 0.9991
Q 12+860 
T 872 
 872 
---
Q 41+494 
T 535 
 535 
---
Q 508+364
T 872 
 872 
---
Q 511+92 
T 603 
 603 
---
Q 85+582 
T 667 
 667 
---
Q 146+45 
T 191 
 191 
---
Q 892+942
T 1834
 1834
---
Q 919+99 
T 1018
 1018
---
Q 738+85 
T 823 
 823 
---
Q 54+579 
T 633 
 633 
---

--------------------------------------------------
Iteration 68
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0015 - acc: 0.9999 - val_loss: 0.0032 - val_acc: 0.9994
Q 985+26 
T 1011
 1011
---
Q 974+43 
T 1017
 1017
---
Q 117+2  
T 119 
 119 
---
Q 196+43 
T 239 
 239 
---
Q 738+748
T 1486
 1486
---
Q 42+253 
T 295 
 295 
---
Q 515+98 
T 613 
 613 
---
Q 149+529
T 678 
 678 
---
Q 5+956  
T 961 
 961 
---
Q 43+586 
T 629 
 629 
---

--------------------------------------------------
Iteration 69
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 9.6461e-04 - acc: 1.0000 - val_loss: 0.0027 - val_acc: 0.9995
Q 24+14  
T 38  
 38  
---
Q 46+348 
T 394 
 394 
---
Q 23+978 
T 1001
 1001
---
Q 1+208  
T 209 
 209 
---
Q 613+538
T 1151
 1151
---
Q 56+296 
T 352 
 352 
---
Q 51+810 
T 861 
 861 
---
Q 929+896
T 1825
 1825
---
Q 128+2  
T 130 
 130 
---
Q 40+14  
T 54  
 54  
---

--------------------------------------------------
Iteration 70
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 8.1041e-04 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9995
Q 373+3  
T 376 
 376 
---
Q 43+586 
T 629 
 629 
---
Q 174+297
T 471 
 471 
---
Q 615+688
T 1303
 1303
---
Q 759+82 
T 841 
 841 
---
Q 0+842  
T 842 
 842 
---
Q 41+589 
T 630 
 630 
---
Q 58+865 
T 923 
 923 
---
Q 634+903
T 1537
 1537
---
Q 32+477 
T 509 
 509 
---

--------------------------------------------------
Iteration 71
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 8.0131e-04 - acc: 1.0000 - val_loss: 0.0026 - val_acc: 0.9993
Q 693+956
T 1649
 1649
---
Q 13+104 
T 117 
 117 
---
Q 181+144
T 325 
 325 
---
Q 403+57 
T 460 
 460 
---
Q 151+941
T 1092
 1092
---
Q 721+88 
T 809 
 809 
---
Q 89+62  
T 151 
 151 
---
Q 513+34 
T 547 
 547 
---
Q 133+112
T 245 
 245 
---
Q 277+4  
T 281 
 281 
---

--------------------------------------------------
Iteration 72
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 7.6304e-04 - acc: 1.0000 - val_loss: 0.0024 - val_acc: 0.9997
Q 761+979
T 1740
 1740
---
Q 68+840 
T 908 
 908 
---
Q 357+57 
T 414 
 414 
---
Q 925+969
T 1894
 1894
---
Q 5+405  
T 410 
 410 
---
Q 774+34 
T 808 
 808 
---
Q 589+10 
T 599 
 599 
---
Q 538+344
T 882 
 882 
---
Q 880+63 
T 943 
 943 
---
Q 586+7  
T 593 
 593 
---

--------------------------------------------------
Iteration 73
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0354 - acc: 0.9901 - val_loss: 0.0561 - val_acc: 0.9803
Q 0+700  
T 700 
 700 
---
Q 634+542
T 1176
 1176
---
Q 53+487 
T 540 
 540 
---
Q 68+841 
T 909 
 919 
---
Q 740+49 
T 789 
 789 
---
Q 99+861 
T 960 
 960 
---
Q 725+51 
T 776 
 776 
---
Q 71+497 
T 568 
 568 
---
Q 653+34 
T 687 
 687 
---
Q 0+353  
T 353 
 353 
---

--------------------------------------------------
Iteration 74
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0119 - acc: 0.9966 - val_loss: 0.0041 - val_acc: 0.9992
Q 525+39 
T 564 
 564 
---
Q 6+214  
T 220 
 220 
---
Q 796+98 
T 894 
 894 
---
Q 257+37 
T 294 
 294 
---
Q 596+206
T 802 
 802 
---
Q 748+456
T 1204
 1204
---
Q 22+248 
T 270 
 270 
---
Q 810+318
T 1128
 1128
---
Q 780+903
T 1683
 1683
---
Q 9+193  
T 202 
 202 
---

--------------------------------------------------
Iteration 75
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0012 - acc: 1.0000 - val_loss: 0.0028 - val_acc: 0.9994
Q 584+83 
T 667 
 667 
---
Q 64+353 
T 417 
 417 
---
Q 10+69  
T 79  
 79  
---
Q 52+942 
T 994 
 994 
---
Q 37+13  
T 50  
 50  
---
Q 197+4  
T 201 
 201 
---
Q 990+74 
T 1064
 1064
---
Q 253+434
T 687 
 687 
---
Q 98+431 
T 529 
 529 
---
Q 808+93 
T 901 
 901 
---

--------------------------------------------------
Iteration 76
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 8.3983e-04 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9993
Q 401+85 
T 486 
 486 
---
Q 526+2  
T 528 
 528 
---
Q 961+11 
T 972 
 972 
---
Q 384+18 
T 402 
 402 
---
Q 55+296 
T 351 
 351 
---
Q 349+974
T 1323
 1323
---
Q 45+143 
T 188 
 188 
---
Q 18+219 
T 237 
 237 
---
Q 91+129 
T 220 
 220 
---
Q 92+878 
T 970 
 970 
---

--------------------------------------------------
Iteration 77
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 7.1116e-04 - acc: 1.0000 - val_loss: 0.0023 - val_acc: 0.9994
Q 23+91  
T 114 
 114 
---
Q 616+2  
T 618 
 618 
---
Q 761+979
T 1740
 1740
---
Q 98+88  
T 186 
 186 
---
Q 91+529 
T 620 
 620 
---
Q 379+731
T 1110
 1110
---
Q 664+55 
T 719 
 719 
---
Q 129+999
T 1128
 1128
---
Q 10+381 
T 391 
 391 
---
Q 2+897  
T 899 
 899 
---

--------------------------------------------------
Iteration 78
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 6.1981e-04 - acc: 1.0000 - val_loss: 0.0022 - val_acc: 0.9994
Q 933+84 
T 1017
 1017
---
Q 3+530  
T 533 
 533 
---
Q 19+293 
T 312 
 312 
---
Q 374+730
T 1104
 1104
---
Q 92+55  
T 147 
 147 
---
Q 9+343  
T 352 
 352 
---
Q 19+70  
T 89  
 89  
---
Q 34+217 
T 251 
 251 
---
Q 236+948
T 1184
 1184
---
Q 452+81 
T 533 
 533 
---

--------------------------------------------------
Iteration 79
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 5.6210e-04 - acc: 1.0000 - val_loss: 0.0021 - val_acc: 0.9994
Q 382+90 
T 472 
 472 
---
Q 884+80 
T 964 
 964 
---
Q 62+705 
T 767 
 767 
---
Q 71+2   
T 73  
 73  
---
Q 36+70  
T 106 
 106 
---
Q 25+44  
T 69  
 69  
---
Q 867+944
T 1811
 1811
---
Q 802+591
T 1393
 1393
---
Q 720+23 
T 743 
 743 
---
Q 907+445
T 1352
 1352
---

--------------------------------------------------
Iteration 80
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 5.1905e-04 - acc: 1.0000 - val_loss: 0.0027 - val_acc: 0.9991
Q 99+953 
T 1052
 1052
---
Q 356+88 
T 444 
 444 
---
Q 40+14  
T 54  
 54  
---
Q 816+22 
T 838 
 838 
---
Q 615+34 
T 649 
 649 
---
Q 50+30  
T 80  
 80  
---
Q 509+563
T 1072
 1072
---
Q 530+1  
T 531 
 531 
---
Q 83+767 
T 850 
 850 
---
Q 348+568
T 916 
 916 
---

--------------------------------------------------
Iteration 81
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 4.9667e-04 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9994
Q 947+227
T 1174
 1174
---
Q 250+25 
T 275 
 275 
---
Q 238+475
T 713 
 713 
---
Q 597+21 
T 618 
 618 
---
Q 773+8  
T 781 
 781 
---
Q 36+396 
T 432 
 432 
---
Q 88+79  
T 167 
 167 
---
Q 513+34 
T 547 
 547 
---
Q 60+943 
T 1003
 1003
---
Q 42+108 
T 150 
 150 
---

--------------------------------------------------
Iteration 82
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0386 - acc: 0.9884 - val_loss: 0.0189 - val_acc: 0.9937
Q 48+908 
T 956 
 956 
---
Q 808+98 
T 906 
 906 
---
Q 508+2  
T 510 
 510 
---
Q 99+48  
T 147 
 147 
---
Q 590+36 
T 626 
 626 
---
Q 359+3  
T 362 
 362 
---
Q 664+39 
T 703 
 703 
---
Q 313+972
T 1285
 1285
---
Q 381+53 
T 434 
 434 
---
Q 293+176
T 469 
 469 
---

--------------------------------------------------
Iteration 83
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 0.0035 - acc: 0.9994 - val_loss: 0.0031 - val_acc: 0.9993
Q 319+0  
T 319 
 319 
---
Q 65+721 
T 786 
 786 
---
Q 310+17 
T 327 
 327 
---
Q 513+805
T 1318
 1318
---
Q 257+4  
T 261 
 261 
---
Q 608+234
T 842 
 842 
---
Q 208+10 
T 218 
 218 
---
Q 441+80 
T 521 
 521 
---
Q 18+43  
T 61  
 61  
---
Q 637+7  
T 644 
 644 
---

--------------------------------------------------
Iteration 84
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 8.9579e-04 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9993
Q 908+63 
T 971 
 971 
---
Q 55+587 
T 642 
 642 
---
Q 24+978 
T 1002
 1002
---
Q 690+57 
T 747 
 747 
---
Q 94+10  
T 104 
 104 
---
Q 673+224
T 897 
 897 
---
Q 590+993
T 1583
 1583
---
Q 37+17  
T 54  
 54  
---
Q 6+614  
T 620 
 620 
---
Q 502+155
T 657 
 657 
---

--------------------------------------------------
Iteration 85
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 6.7702e-04 - acc: 1.0000 - val_loss: 0.0021 - val_acc: 0.9997
Q 30+849 
T 879 
 879 
---
Q 8+650  
T 658 
 658 
---
Q 24+576 
T 600 
 600 
---
Q 547+85 
T 632 
 632 
---
Q 7+986  
T 993 
 993 
---
Q 547+85 
T 632 
 632 
---
Q 968+2  
T 970 
 970 
---
Q 132+50 
T 182 
 182 
---
Q 813+684
T 1497
 1497
---
Q 658+706
T 1364
 1364
---

--------------------------------------------------
Iteration 86
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 5.8183e-04 - acc: 1.0000 - val_loss: 0.0021 - val_acc: 0.9996
Q 881+0  
T 881 
 881 
---
Q 928+758
T 1686
 1686
---
Q 17+767 
T 784 
 784 
---
Q 372+185
T 557 
 557 
---
Q 217+338
T 555 
 555 
---
Q 129+22 
T 151 
 151 
---
Q 557+7  
T 564 
 564 
---
Q 997+885
T 1882
 1882
---
Q 880+63 
T 943 
 943 
---
Q 592+97 
T 689 
 689 
---

--------------------------------------------------
Iteration 87
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 8.8703e-04 - acc: 0.9999 - val_loss: 0.0020 - val_acc: 0.9996
Q 672+990
T 1662
 1662
---
Q 54+402 
T 456 
 456 
---
Q 70+201 
T 271 
 271 
---
Q 24+825 
T 849 
 849 
---
Q 93+50  
T 143 
 143 
---
Q 256+678
T 934 
 934 
---
Q 851+661
T 1512
 1512
---
Q 538+736
T 1274
 1274
---
Q 33+109 
T 142 
 142 
---
Q 329+795
T 1124
 1124
---

--------------------------------------------------
Iteration 88
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 4.7175e-04 - acc: 1.0000 - val_loss: 0.0019 - val_acc: 0.9996
Q 519+38 
T 557 
 557 
---
Q 545+95 
T 640 
 640 
---
Q 331+3  
T 334 
 334 
---
Q 753+44 
T 797 
 797 
---
Q 258+9  
T 267 
 267 
---
Q 31+385 
T 416 
 416 
---
Q 5+939  
T 944 
 944 
---
Q 793+688
T 1481
 1481
---
Q 15+267 
T 282 
 282 
---
Q 977+5  
T 982 
 982 
---

--------------------------------------------------
Iteration 89
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 3.9875e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9997
Q 179+0  
T 179 
 179 
---
Q 320+56 
T 376 
 376 
---
Q 805+29 
T 834 
 834 
---
Q 129+22 
T 151 
 151 
---
Q 27+376 
T 403 
 403 
---
Q 814+43 
T 857 
 857 
---
Q 18+885 
T 903 
 903 
---
Q 50+30  
T 80  
 80  
---
Q 61+34  
T 95  
 95  
---
Q 12+26  
T 38  
 38  
---

--------------------------------------------------
Iteration 90
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0367 - acc: 0.9900 - val_loss: 0.1267 - val_acc: 0.9598
Q 510+11 
T 521 
 531 
---
Q 98+981 
T 1079
 1079
---
Q 181+834
T 1015
 1015
---
Q 51+279 
T 330 
 330 
---
Q 84+623 
T 707 
 717 
---
Q 51+420 
T 471 
 471 
---
Q 263+38 
T 301 
 301 
---
Q 131+572
T 703 
 703 
---
Q 9+605  
T 614 
 614 
---
Q 9+457  
T 466 
 466 
---

--------------------------------------------------
Iteration 91
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 0.0114 - acc: 0.9968 - val_loss: 0.0046 - val_acc: 0.9987
Q 800+852
T 1652
 1652
---
Q 90+721 
T 811 
 811 
---
Q 671+862
T 1533
 1533
---
Q 8+306  
T 314 
 314 
---
Q 334+694
T 1028
 1028
---
Q 42+179 
T 221 
 221 
---
Q 74+35  
T 109 
 109 
---
Q 97+999 
T 1096
 1096
---
Q 528+5  
T 533 
 533 
---
Q 735+86 
T 821 
 821 
---

--------------------------------------------------
Iteration 92
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 0.0010 - acc: 1.0000 - val_loss: 0.0025 - val_acc: 0.9997
Q 95+657 
T 752 
 752 
---
Q 598+220
T 818 
 818 
---
Q 750+862
T 1612
 1612
---
Q 25+0   
T 25  
 25  
---
Q 402+93 
T 495 
 495 
---
Q 36+675 
T 711 
 711 
---
Q 634+13 
T 647 
 647 
---
Q 97+558 
T 655 
 655 
---
Q 607+1  
T 608 
 608 
---
Q 646+205
T 851 
 851 
---

--------------------------------------------------
Iteration 93
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 6.6099e-04 - acc: 1.0000 - val_loss: 0.0022 - val_acc: 0.9997
Q 51+630 
T 681 
 681 
---
Q 3+461  
T 464 
 464 
---
Q 760+460
T 1220
 1220
---
Q 688+55 
T 743 
 743 
---
Q 665+59 
T 724 
 724 
---
Q 5+259  
T 264 
 264 
---
Q 115+5  
T 120 
 120 
---
Q 256+678
T 934 
 934 
---
Q 3+965  
T 968 
 968 
---
Q 325+78 
T 403 
 403 
---

--------------------------------------------------
Iteration 94
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 5.4595e-04 - acc: 1.0000 - val_loss: 0.0020 - val_acc: 0.9997
Q 190+65 
T 255 
 255 
---
Q 817+986
T 1803
 1803
---
Q 346+51 
T 397 
 397 
---
Q 59+339 
T 398 
 398 
---
Q 242+31 
T 273 
 273 
---
Q 671+843
T 1514
 1514
---
Q 41+494 
T 535 
 535 
---
Q 726+332
T 1058
 1058
---
Q 355+751
T 1106
 1106
---
Q 939+937
T 1876
 1876
---

--------------------------------------------------
Iteration 95
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 4.7194e-04 - acc: 1.0000 - val_loss: 0.0019 - val_acc: 0.9996
Q 935+12 
T 947 
 947 
---
Q 60+496 
T 556 
 556 
---
Q 211+0  
T 211 
 211 
---
Q 117+550
T 667 
 667 
---
Q 510+11 
T 521 
 521 
---
Q 44+954 
T 998 
 998 
---
Q 2+971  
T 973 
 973 
---
Q 0+122  
T 122 
 122 
---
Q 773+8  
T 781 
 781 
---
Q 4+397  
T 401 
 401 
---

--------------------------------------------------
Iteration 96
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 4.1235e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9997
Q 8+54   
T 62  
 62  
---
Q 750+47 
T 797 
 797 
---
Q 379+731
T 1110
 1110
---
Q 449+80 
T 529 
 529 
---
Q 966+7  
T 973 
 973 
---
Q 719+8  
T 727 
 727 
---
Q 123+45 
T 168 
 168 
---
Q 73+459 
T 532 
 532 
---
Q 740+542
T 1282
 1282
---
Q 84+843 
T 927 
 927 
---

--------------------------------------------------
Iteration 97
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 3.6908e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9997
Q 2+126  
T 128 
 128 
---
Q 79+842 
T 921 
 921 
---
Q 768+6  
T 774 
 774 
---
Q 937+360
T 1297
 1297
---
Q 22+1   
T 23  
 23  
---
Q 449+80 
T 529 
 529 
---
Q 590+237
T 827 
 827 
---
Q 1+258  
T 259 
 259 
---
Q 98+657 
T 755 
 755 
---
Q 426+67 
T 493 
 493 
---

--------------------------------------------------
Iteration 98
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 29s - loss: 3.5174e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9997
Q 696+25 
T 721 
 721 
---
Q 90+606 
T 696 
 696 
---
Q 49+95  
T 144 
 144 
---
Q 438+345
T 783 
 783 
---
Q 282+4  
T 286 
 286 
---
Q 737+303
T 1040
 1040
---
Q 511+4  
T 515 
 515 
---
Q 29+400 
T 429 
 429 
---
Q 2+372  
T 374 
 374 
---
Q 38+85  
T 123 
 123 
---

--------------------------------------------------
Iteration 99
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 3.2164e-04 - acc: 1.0000 - val_loss: 0.0029 - val_acc: 0.9994
Q 5+529  
T 534 
 534 
---
Q 444+640
T 1084
 1084
---
Q 96+74  
T 170 
 170 
---
Q 93+50  
T 143 
 143 
---
Q 40+59  
T 99  
 99  
---
Q 325+257
T 582 
 582 
---
Q 8+901  
T 909 
 909 
---
Q 47+20  
T 67  
 67  
---
Q 543+21 
T 564 
 564 
---
Q 837+20 
T 857 
 857 
---

--------------------------------------------------
Iteration 100
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0428 - acc: 0.9881 - val_loss: 0.0072 - val_acc: 0.9980
Q 962+624
T 1586
 1586
---
Q 132+47 
T 179 
 179 
---
Q 828+602
T 1430
 1430
---
Q 15+933 
T 948 
 948 
---
Q 319+58 
T 377 
 377 
---
Q 11+365 
T 376 
 376 
---
Q 623+19 
T 642 
 642 
---
Q 270+61 
T 331 
 331 
---
Q 60+294 
T 354 
 354 
---
Q 312+211
T 523 
 523 
---

--------------------------------------------------
Iteration 101
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 0.0019 - acc: 0.9998 - val_loss: 0.0026 - val_acc: 0.9994
Q 685+394
T 1079
 1079
---
Q 1+196  
T 197 
 197 
---
Q 65+259 
T 324 
 324 
---
Q 77+139 
T 216 
 216 
---
Q 456+816
T 1272
 1272
---
Q 816+633
T 1449
 1449
---
Q 87+294 
T 381 
 381 
---
Q 9+858  
T 867 
 867 
---
Q 787+894
T 1681
 1681
---
Q 124+25 
T 149 
 149 
---

--------------------------------------------------
Iteration 102
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 6.6114e-04 - acc: 1.0000 - val_loss: 0.0023 - val_acc: 0.9996
Q 949+404
T 1353
 1353
---
Q 9+593  
T 602 
 602 
---
Q 18+76  
T 94  
 94  
---
Q 913+501
T 1414
 1414
---
Q 414+256
T 670 
 670 
---
Q 6+448  
T 454 
 454 
---
Q 641+62 
T 703 
 703 
---
Q 59+761 
T 820 
 820 
---
Q 15+862 
T 877 
 877 
---
Q 210+497
T 707 
 707 
---

--------------------------------------------------
Iteration 103
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 30s - loss: 4.9612e-04 - acc: 1.0000 - val_loss: 0.0019 - val_acc: 0.9996
Q 670+13 
T 683 
 683 
---
Q 1+35   
T 36  
 36  
---
Q 6+438  
T 444 
 444 
---
Q 196+208
T 404 
 404 
---
Q 344+7  
T 351 
 351 
---
Q 893+506
T 1399
 1399
---
Q 729+466
T 1195
 1195
---
Q 529+59 
T 588 
 588 
---
Q 7+169  
T 176 
 176 
---
Q 135+12 
T 147 
 147 
---

--------------------------------------------------
Iteration 104
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 32s - loss: 4.2308e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9996
Q 736+17 
T 753 
 753 
---
Q 830+271
T 1101
 1101
---
Q 732+92 
T 824 
 824 
---
Q 0+31   
T 31  
 31  
---
Q 4+981  
T 985 
 985 
---
Q 1+442  
T 443 
 443 
---
Q 383+43 
T 426 
 426 
---
Q 122+7  
T 129 
 129 
---
Q 917+490
T 1407
 1407
---
Q 3+311  
T 314 
 314 
---

--------------------------------------------------
Iteration 105
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 31s - loss: 3.6788e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9996
Q 51+553 
T 604 
 604 
---
Q 23+800 
T 823 
 823 
---
Q 711+365
T 1076
 1076
---
Q 12+709 
T 721 
 721 
---
Q 844+289
T 1133
 1133
---
Q 867+478
T 1345
 1345
---
Q 538+408
T 946 
 946 
---
Q 26+963 
T 989 
 989 
---
Q 834+713
T 1547
 1547
---
Q 50+75  
T 125 
 125 
---

--------------------------------------------------
Iteration 106
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 20s - loss: 3.3169e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9994
Q 33+109 
T 142 
 142 
---
Q 12+63  
T 75  
 75  
---
Q 51+630 
T 681 
 681 
---
Q 325+78 
T 403 
 403 
---
Q 39+96  
T 135 
 135 
---
Q 9+783  
T 792 
 792 
---
Q 278+59 
T 337 
 337 
---
Q 603+926
T 1529
 1529
---
Q 749+64 
T 813 
 813 
---
Q 28+970 
T 998 
 998 
---

--------------------------------------------------
Iteration 107
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 3.1954e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9996
Q 945+842
T 1787
 1787
---
Q 873+0  
T 873 
 873 
---
Q 819+182
T 1001
 1001
---
Q 906+38 
T 944 
 944 
---
Q 151+86 
T 237 
 237 
---
Q 59+226 
T 285 
 285 
---
Q 96+595 
T 691 
 691 
---
Q 353+47 
T 400 
 400 
---
Q 234+240
T 474 
 474 
---
Q 941+227
T 1168
 1168
---

--------------------------------------------------
Iteration 108
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.6826e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9994
Q 2+373  
T 375 
 375 
---
Q 531+79 
T 610 
 610 
---
Q 508+2  
T 510 
 510 
---
Q 84+738 
T 822 
 822 
---
Q 490+137
T 627 
 627 
---
Q 592+257
T 849 
 849 
---
Q 371+981
T 1352
 1352
---
Q 41+35  
T 76  
 76  
---
Q 437+90 
T 527 
 527 
---
Q 75+26  
T 101 
 101 
---

--------------------------------------------------
Iteration 109
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 0.0355 - acc: 0.9900 - val_loss: 0.0243 - val_acc: 0.9917.99
Q 40+926 
T 966 
 966 
---
Q 772+545
T 1317
 1317
---
Q 880+5  
T 885 
 885 
---
Q 688+93 
T 781 
 781 
---
Q 937+579
T 1516
 1516
---
Q 78+202 
T 280 
 280 
---
Q 98+981 
T 1079
 1079
---
Q 170+481
T 651 
 651 
---
Q 652+366
T 1018
 1018
---
Q 782+10 
T 792 
 792 
---

--------------------------------------------------
Iteration 110
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 0.0044 - acc: 0.9990 - val_loss: 0.0049 - val_acc: 0.9986
Q 37+433 
T 470 
 470 
---
Q 32+21  
T 53  
 53  
---
Q 950+85 
T 1035
 1035
---
Q 895+8  
T 903 
 903 
---
Q 300+44 
T 344 
 344 
---
Q 49+449 
T 498 
 498 
---
Q 3+549  
T 552 
 552 
---
Q 969+3  
T 972 
 972 
---
Q 555+27 
T 582 
 582 
---
Q 636+435
T 1071
 1071
---

--------------------------------------------------
Iteration 111
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 8.9508e-04 - acc: 1.0000 - val_loss: 0.0021 - val_acc: 0.9995
Q 969+262
T 1231
 1231
---
Q 194+64 
T 258 
 258 
---
Q 521+525
T 1046
 1046
---
Q 56+274 
T 330 
 330 
---
Q 53+69  
T 122 
 122 
---
Q 637+7  
T 644 
 644 
---
Q 964+569
T 1533
 1533
---
Q 45+759 
T 804 
 804 
---
Q 586+7  
T 593 
 593 
---
Q 95+311 
T 406 
 406 
---

--------------------------------------------------
Iteration 112
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 4.9268e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9996
Q 703+31 
T 734 
 734 
---
Q 732+570
T 1302
 1302
---
Q 243+875
T 1118
 1118
---
Q 562+623
T 1185
 1185
---
Q 136+5  
T 141 
 141 
---
Q 7+563  
T 570 
 570 
---
Q 59+761 
T 820 
 820 
---
Q 411+17 
T 428 
 428 
---
Q 513+48 
T 561 
 561 
---
Q 93+21  
T 114 
 114 
---

--------------------------------------------------
Iteration 113
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 4.0623e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9996
Q 756+20 
T 776 
 776 
---
Q 44+29  
T 73  
 73  
---
Q 691+671
T 1362
 1362
---
Q 8+175  
T 183 
 183 
---
Q 314+25 
T 339 
 339 
---
Q 10+75  
T 85  
 85  
---
Q 81+79  
T 160 
 160 
---
Q 457+40 
T 497 
 497 
---
Q 859+865
T 1724
 1724
---
Q 82+940 
T 1022
 1022
---

--------------------------------------------------
Iteration 114
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.4817e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 501+910
T 1411
 1411
---
Q 50+502 
T 552 
 552 
---
Q 330+6  
T 336 
 336 
---
Q 966+7  
T 973 
 973 
---
Q 268+53 
T 321 
 321 
---
Q 56+41  
T 97  
 97  
---
Q 393+76 
T 469 
 469 
---
Q 2+527  
T 529 
 529 
---
Q 867+68 
T 935 
 935 
---
Q 237+17 
T 254 
 254 
---

--------------------------------------------------
Iteration 115
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.0627e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 85+127 
T 212 
 212 
---
Q 0+58   
T 58  
 58  
---
Q 296+68 
T 364 
 364 
---
Q 99+475 
T 574 
 574 
---
Q 863+9  
T 872 
 872 
---
Q 274+19 
T 293 
 293 
---
Q 569+3  
T 572 
 572 
---
Q 286+42 
T 328 
 328 
---
Q 122+7  
T 129 
 129 
---
Q 108+33 
T 141 
 141 
---

--------------------------------------------------
Iteration 116
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.7302e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 70+59  
T 129 
 129 
---
Q 3+163  
T 166 
 166 
---
Q 530+1  
T 531 
 531 
---
Q 907+264
T 1171
 1171
---
Q 669+68 
T 737 
 737 
---
Q 864+50 
T 914 
 914 
---
Q 72+271 
T 343 
 343 
---
Q 252+17 
T 269 
 269 
---
Q 55+550 
T 605 
 605 
---
Q 5+157  
T 162 
 162 
---

--------------------------------------------------
Iteration 117
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.4437e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9998
Q 722+0  
T 722 
 722 
---
Q 3+630  
T 633 
 633 
---
Q 77+35  
T 112 
 112 
---
Q 835+5  
T 840 
 840 
---
Q 62+248 
T 310 
 310 
---
Q 110+0  
T 110 
 110 
---
Q 726+700
T 1426
 1426
---
Q 97+97  
T 194 
 194 
---
Q 785+112
T 897 
 897 
---
Q 55+431 
T 486 
 486 
---

--------------------------------------------------
Iteration 118
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.5606e-04 - acc: 1.0000 - val_loss: 0.0019 - val_acc: 0.9996
Q 40+729 
T 769 
 769 
---
Q 880+63 
T 943 
 943 
---
Q 68+746 
T 814 
 814 
---
Q 72+505 
T 577 
 577 
---
Q 133+112
T 245 
 245 
---
Q 387+165
T 552 
 552 
---
Q 873+27 
T 900 
 900 
---
Q 351+975
T 1326
 1326
---
Q 830+597
T 1427
 1427
---
Q 113+480
T 593 
 593 
---

--------------------------------------------------
Iteration 119
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0364 - acc: 0.9903 - val_loss: 0.0044 - val_acc: 0.9990
Q 112+74 
T 186 
 186 
---
Q 55+619 
T 674 
 674 
---
Q 873+53 
T 926 
 926 
---
Q 62+674 
T 736 
 736 
---
Q 537+0  
T 537 
 537 
---
Q 40+389 
T 429 
 429 
---
Q 481+69 
T 550 
 550 
---
Q 245+83 
T 328 
 328 
---
Q 6+142  
T 148 
 148 
---
Q 873+371
T 1244
 1244
---

--------------------------------------------------
Iteration 120
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0028 - acc: 0.9994 - val_loss: 0.0053 - val_acc: 0.9984
Q 23+313 
T 336 
 336 
---
Q 28+475 
T 503 
 503 
---
Q 9+502  
T 511 
 511 
---
Q 455+4  
T 459 
 459 
---
Q 598+90 
T 688 
 688 
---
Q 789+9  
T 798 
 798 
---
Q 340+4  
T 344 
 344 
---
Q 533+53 
T 586 
 586 
---
Q 639+84 
T 723 
 723 
---
Q 75+648 
T 723 
 723 
---

--------------------------------------------------
Iteration 121
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0014 - acc: 0.9997 - val_loss: 0.0024 - val_acc: 0.9995
Q 982+547
T 1529
 1529
---
Q 873+836
T 1709
 1709
---
Q 66+68  
T 134 
 134 
---
Q 123+45 
T 168 
 168 
---
Q 46+472 
T 518 
 518 
---
Q 614+18 
T 632 
 632 
---
Q 897+78 
T 975 
 975 
---
Q 973+554
T 1527
 1527
---
Q 381+1  
T 382 
 382 
---
Q 833+902
T 1735
 1735
---

--------------------------------------------------
Iteration 122
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 4.0803e-04 - acc: 1.0000 - val_loss: 0.0019 - val_acc: 0.9996
Q 215+213
T 428 
 428 
---
Q 688+93 
T 781 
 781 
---
Q 32+561 
T 593 
 593 
---
Q 1+864  
T 865 
 865 
---
Q 38+85  
T 123 
 123 
---
Q 327+42 
T 369 
 369 
---
Q 119+356
T 475 
 475 
---
Q 0+776  
T 776 
 776 
---
Q 737+80 
T 817 
 817 
---
Q 457+129
T 586 
 586 
---

--------------------------------------------------
Iteration 123
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.3046e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9997
Q 99+53  
T 152 
 152 
---
Q 829+42 
T 871 
 871 
---
Q 46+579 
T 625 
 625 
---
Q 939+937
T 1876
 1876
---
Q 87+531 
T 618 
 618 
---
Q 34+694 
T 728 
 728 
---
Q 39+305 
T 344 
 344 
---
Q 40+668 
T 708 
 708 
---
Q 16+997 
T 1013
 1013
---
Q 165+945
T 1110
 1110
---

--------------------------------------------------
Iteration 124
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.8636e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9997
Q 685+394
T 1079
 1079
---
Q 462+81 
T 543 
 543 
---
Q 270+61 
T 331 
 331 
---
Q 127+646
T 773 
 773 
---
Q 990+40 
T 1030
 1030
---
Q 227+29 
T 256 
 256 
---
Q 46+769 
T 815 
 815 
---
Q 129+999
T 1128
 1128
---
Q 965+0  
T 965 
 965 
---
Q 6+690  
T 696 
 696 
---

--------------------------------------------------
Iteration 125
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 16s - loss: 2.5346e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9996
Q 2+401  
T 403 
 403 
---
Q 57+396 
T 453 
 453 
---
Q 94+17  
T 111 
 111 
---
Q 116+47 
T 163 
 163 
---
Q 62+256 
T 318 
 318 
---
Q 16+797 
T 813 
 813 
---
Q 75+516 
T 591 
 591 
---
Q 93+919 
T 1012
 1012
---
Q 163+11 
T 174 
 174 
---
Q 211+121
T 332 
 332 
---

--------------------------------------------------
Iteration 126
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.2791e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9996
Q 308+7  
T 315 
 315 
---
Q 18+24  
T 42  
 42  
---
Q 68+153 
T 221 
 221 
---
Q 5+279  
T 284 
 284 
---
Q 694+2  
T 696 
 696 
---
Q 123+45 
T 168 
 168 
---
Q 367+161
T 528 
 528 
---
Q 703+33 
T 736 
 736 
---
Q 73+318 
T 391 
 391 
---
Q 597+364
T 961 
 961 
---

--------------------------------------------------
Iteration 127
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.0599e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 666+299
T 965 
 965 
---
Q 709+393
T 1102
 1102
---
Q 89+18  
T 107 
 107 
---
Q 865+206
T 1071
 1071
---
Q 4+516  
T 520 
 520 
---
Q 42+8   
T 50  
 50  
---
Q 317+92 
T 409 
 409 
---
Q 866+41 
T 907 
 907 
---
Q 724+788
T 1512
 1512
---
Q 453+11 
T 464 
 464 
---

--------------------------------------------------
Iteration 128
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.0974e-04 - acc: 1.0000 - val_loss: 0.0036 - val_acc: 0.9989
Q 140+16 
T 156 
 156 
---
Q 7+812  
T 819 
 819 
---
Q 538+521
T 1059
 1059
---
Q 268+27 
T 295 
 295 
---
Q 8+256  
T 264 
 264 
---
Q 617+691
T 1308
 1308
---
Q 565+549
T 1114
 1114
---
Q 431+5  
T 436 
 436 
---
Q 700+8  
T 708 
 708 
---
Q 867+21 
T 888 
 888 
---

--------------------------------------------------
Iteration 129
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0410 - acc: 0.9884 - val_loss: 0.0053 - val_acc: 0.9989
Q 26+568 
T 594 
 594 
---
Q 174+15 
T 189 
 189 
---
Q 25+44  
T 69  
 69  
---
Q 645+95 
T 740 
 740 
---
Q 117+270
T 387 
 387 
---
Q 42+734 
T 776 
 776 
---
Q 471+33 
T 504 
 504 
---
Q 2+399  
T 401 
 401 
---
Q 497+28 
T 525 
 525 
---
Q 38+902 
T 940 
 940 
---

--------------------------------------------------
Iteration 130
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0107 - acc: 0.9973 - val_loss: 0.0070 - val_acc: 0.9979
Q 990+40 
T 1030
 1030
---
Q 253+709
T 962 
 962 
---
Q 771+867
T 1638
 1638
---
Q 239+379
T 618 
 618 
---
Q 119+29 
T 148 
 148 
---
Q 201+73 
T 274 
 274 
---
Q 81+646 
T 727 
 727 
---
Q 965+0  
T 965 
 965 
---
Q 356+88 
T 444 
 444 
---
Q 794+70 
T 864 
 864 
---

--------------------------------------------------
Iteration 131
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0013 - acc: 0.9998 - val_loss: 0.0022 - val_acc: 0.9996
Q 70+45  
T 115 
 115 
---
Q 99+861 
T 960 
 960 
---
Q 661+63 
T 724 
 724 
---
Q 609+418
T 1027
 1027
---
Q 43+586 
T 629 
 629 
---
Q 765+67 
T 832 
 832 
---
Q 78+968 
T 1046
 1046
---
Q 101+37 
T 138 
 138 
---
Q 751+217
T 968 
 968 
---
Q 92+750 
T 842 
 842 
---

--------------------------------------------------
Iteration 132
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 4.9136e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9997
Q 907+445
T 1352
 1352
---
Q 719+7  
T 726 
 726 
---
Q 93+104 
T 197 
 197 
---
Q 9+11   
T 20  
 10  
---
Q 728+6  
T 734 
 734 
---
Q 28+135 
T 163 
 163 
---
Q 54+83  
T 137 
 137 
---
Q 6+761  
T 767 
 767 
---
Q 90+277 
T 367 
 367 
---
Q 46+769 
T 815 
 815 
---

--------------------------------------------------
Iteration 133
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.5864e-04 - acc: 1.0000 - val_loss: 0.0018 - val_acc: 0.9997
Q 7+459  
T 466 
 466 
---
Q 5+939  
T 944 
 944 
---
Q 264+94 
T 358 
 358 
---
Q 83+178 
T 261 
 261 
---
Q 208+178
T 386 
 386 
---
Q 3+483  
T 486 
 486 
---
Q 996+38 
T 1034
 1034
---
Q 588+9  
T 597 
 597 
---
Q 142+36 
T 178 
 178 
---
Q 755+71 
T 826 
 826 
---

--------------------------------------------------
Iteration 134
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.0334e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 47+602 
T 649 
 649 
---
Q 613+47 
T 660 
 660 
---
Q 754+662
T 1416
 1416
---
Q 511+877
T 1388
 1388
---
Q 68+258 
T 326 
 326 
---
Q 3+216  
T 219 
 219 
---
Q 36+396 
T 432 
 432 
---
Q 51+8   
T 59  
 59  
---
Q 667+603
T 1270
 1270
---
Q 5+252  
T 257 
 257 
---

--------------------------------------------------
Iteration 135
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 19s - loss: 2.6355e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 40+134 
T 174 
 174 
---
Q 538+860
T 1398
 1398
---
Q 8+763  
T 771 
 771 
---
Q 995+335
T 1330
 1330
---
Q 773+8  
T 781 
 781 
---
Q 962+51 
T 1013
 1013
---
Q 2+897  
T 899 
 899 
---
Q 51+810 
T 861 
 861 
---
Q 3+123  
T 126 
 126 
---
Q 91+495 
T 586 
 586 
---

--------------------------------------------------
Iteration 136
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.3368e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 318+541
T 859 
 859 
---
Q 363+75 
T 438 
 438 
---
Q 53+567 
T 620 
 620 
---
Q 7+126  
T 133 
 133 
---
Q 326+162
T 488 
 488 
---
Q 121+41 
T 162 
 162 
---
Q 996+810
T 1806
 1806
---
Q 45+762 
T 807 
 807 
---
Q 69+730 
T 799 
 799 
---
Q 46+736 
T 782 
 782 
---

--------------------------------------------------
Iteration 137
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.0864e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 2+289  
T 291 
 291 
---
Q 954+289
T 1243
 1243
---
Q 724+64 
T 788 
 788 
---
Q 98+24  
T 122 
 122 
---
Q 74+382 
T 456 
 456 
---
Q 608+60 
T 668 
 668 
---
Q 61+960 
T 1021
 1021
---
Q 59+194 
T 253 
 253 
---
Q 49+218 
T 267 
 267 
---
Q 415+540
T 955 
 955 
---

--------------------------------------------------
Iteration 138
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.8762e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 95+498 
T 593 
 593 
---
Q 708+47 
T 755 
 755 
---
Q 35+18  
T 53  
 53  
---
Q 855+48 
T 903 
 903 
---
Q 767+203
T 970 
 970 
---
Q 176+5  
T 181 
 181 
---
Q 57+82  
T 139 
 139 
---
Q 90+435 
T 525 
 525 
---
Q 83+273 
T 356 
 356 
---
Q 133+637
T 770 
 770 
---

--------------------------------------------------
Iteration 139
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.6911e-04 - acc: 1.0000 - val_loss: 0.0014 - val_acc: 0.9997
Q 70+320 
T 390 
 390 
---
Q 33+835 
T 868 
 868 
---
Q 203+458
T 661 
 661 
---
Q 793+1  
T 794 
 794 
---
Q 611+37 
T 648 
 648 
---
Q 167+4  
T 171 
 171 
---
Q 83+625 
T 708 
 708 
---
Q 511+877
T 1388
 1388
---
Q 24+226 
T 250 
 250 
---
Q 41+721 
T 762 
 762 
---

--------------------------------------------------
Iteration 140
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.5227e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9996
Q 94+17  
T 111 
 111 
---
Q 469+29 
T 498 
 498 
---
Q 33+490 
T 523 
 523 
---
Q 9+925  
T 934 
 934 
---
Q 650+502
T 1152
 1152
---
Q 231+412
T 643 
 643 
---
Q 124+25 
T 149 
 149 
---
Q 589+83 
T 672 
 672 
---
Q 228+933
T 1161
 1161
---
Q 611+92 
T 703 
 703 
---

--------------------------------------------------
Iteration 141
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.5119e-04 - acc: 1.0000 - val_loss: 0.0017 - val_acc: 0.9996
Q 465+3  
T 468 
 468 
---
Q 59+332 
T 391 
 391 
---
Q 552+9  
T 561 
 561 
---
Q 962+131
T 1093
 1093
---
Q 257+37 
T 294 
 294 
---
Q 4+105  
T 109 
 109 
---
Q 757+485
T 1242
 1242
---
Q 58+304 
T 362 
 362 
---
Q 9+11   
T 20  
 10  
---
Q 71+561 
T 632 
 632 
---

--------------------------------------------------
Iteration 142
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 0.0346 - acc: 0.9900 - val_loss: 0.0052 - val_acc: 0.9986
Q 30+849 
T 879 
 879 
---
Q 725+789
T 1514
 1514
---
Q 26+0   
T 26  
 26  
---
Q 277+596
T 873 
 873 
---
Q 31+251 
T 282 
 282 
---
Q 317+493
T 810 
 810 
---
Q 607+42 
T 649 
 649 
---
Q 742+42 
T 784 
 784 
---
Q 446+357
T 803 
 803 
---
Q 42+745 
T 787 
 787 
---

--------------------------------------------------
Iteration 143
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0012 - acc: 0.9999 - val_loss: 0.0019 - val_acc: 0.9996
Q 678+907
T 1585
 1585
---
Q 653+366
T 1019
 1019
---
Q 230+1  
T 231 
 231 
---
Q 24+226 
T 250 
 250 
---
Q 253+709
T 962 
 962 
---
Q 88+67  
T 155 
 155 
---
Q 57+656 
T 713 
 713 
---
Q 489+197
T 686 
 686 
---
Q 41+589 
T 630 
 630 
---
Q 133+2  
T 135 
 135 
---

--------------------------------------------------
Iteration 144
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 4.2291e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 703+205
T 908 
 908 
---
Q 38+36  
T 74  
 74  
---
Q 564+265
T 829 
 829 
---
Q 30+481 
T 511 
 511 
---
Q 937+579
T 1516
 1516
---
Q 804+91 
T 895 
 895 
---
Q 6+10   
T 16  
 16  
---
Q 2+574  
T 576 
 576 
---
Q 0+52   
T 52  
 52  
---
Q 753+44 
T 797 
 797 
---

--------------------------------------------------
Iteration 145
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.2329e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 181+22 
T 203 
 203 
---
Q 214+1  
T 215 
 215 
---
Q 231+244
T 475 
 475 
---
Q 87+251 
T 338 
 338 
---
Q 14+549 
T 563 
 563 
---
Q 80+439 
T 519 
 519 
---
Q 85+95  
T 180 
 180 
---
Q 90+610 
T 700 
 700 
---
Q 396+85 
T 481 
 481 
---
Q 117+1  
T 118 
 118 
---

--------------------------------------------------
Iteration 146
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.7293e-04 - acc: 1.0000 - val_loss: 0.0014 - val_acc: 0.9998
Q 8+52   
T 60  
 60  
---
Q 51+770 
T 821 
 821 
---
Q 77+410 
T 487 
 487 
---
Q 93+866 
T 959 
 959 
---
Q 611+37 
T 648 
 648 
---
Q 7+435  
T 442 
 442 
---
Q 303+31 
T 334 
 334 
---
Q 872+665
T 1537
 1537
---
Q 425+31 
T 456 
 456 
---
Q 95+36  
T 131 
 131 
---

--------------------------------------------------
Iteration 147
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.3483e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 36+858 
T 894 
 894 
---
Q 478+550
T 1028
 1028
---
Q 190+65 
T 255 
 255 
---
Q 5+157  
T 162 
 162 
---
Q 26+136 
T 162 
 162 
---
Q 452+223
T 675 
 675 
---
Q 755+71 
T 826 
 826 
---
Q 384+608
T 992 
 992 
---
Q 62+59  
T 121 
 121 
---
Q 464+5  
T 469 
 469 
---

--------------------------------------------------
Iteration 148
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.0585e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 603+926
T 1529
 1529
---
Q 974+812
T 1786
 1786
---
Q 85+318 
T 403 
 403 
---
Q 18+102 
T 120 
 120 
---
Q 929+424
T 1353
 1353
---
Q 50+11  
T 61  
 61  
---
Q 12+334 
T 346 
 346 
---
Q 647+495
T 1142
 1142
---
Q 162+647
T 809 
 809 
---
Q 776+927
T 1703
 1703
---

--------------------------------------------------
Iteration 149
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.8323e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9997
Q 71+242 
T 313 
 313 
---
Q 4+284  
T 288 
 288 
---
Q 400+86 
T 486 
 486 
---
Q 535+600
T 1135
 1135
---
Q 209+3  
T 212 
 212 
---
Q 94+313 
T 407 
 407 
---
Q 127+646
T 773 
 773 
---
Q 510+142
T 652 
 652 
---
Q 707+78 
T 785 
 785 
---
Q 785+5  
T 790 
 790 
---

--------------------------------------------------
Iteration 150
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.6286e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9996
Q 9+623  
T 632 
 632 
---
Q 91+407 
T 498 
 498 
---
Q 29+386 
T 415 
 415 
---
Q 7+563  
T 570 
 570 
---
Q 753+44 
T 797 
 797 
---
Q 121+249
T 370 
 370 
---
Q 5+69   
T 74  
 74  
---
Q 1+938  
T 939 
 939 
---
Q 560+53 
T 613 
 613 
---
Q 786+67 
T 853 
 853 
---

--------------------------------------------------
Iteration 151
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.4827e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9997
Q 898+60 
T 958 
 958 
---
Q 5+718  
T 723 
 723 
---
Q 6+305  
T 311 
 311 
---
Q 61+979 
T 1040
 1040
---
Q 4+516  
T 520 
 520 
---
Q 23+359 
T 382 
 382 
---
Q 67+35  
T 102 
 102 
---
Q 331+3  
T 334 
 334 
---
Q 117+5  
T 122 
 122 
---
Q 844+53 
T 897 
 897 
---

--------------------------------------------------
Iteration 152
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.3295e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 62+907 
T 969 
 969 
---
Q 533+20 
T 553 
 553 
---
Q 919+78 
T 997 
 997 
---
Q 849+669
T 1518
 1518
---
Q 97+618 
T 715 
 715 
---
Q 82+569 
T 651 
 651 
---
Q 872+40 
T 912 
 912 
---
Q 28+64  
T 92  
 92  
---
Q 900+60 
T 960 
 960 
---
Q 594+530
T 1124
 1124
---

--------------------------------------------------
Iteration 153
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.1862e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 617+695
T 1312
 1312
---
Q 82+667 
T 749 
 749 
---
Q 794+41 
T 835 
 835 
---
Q 335+334
T 669 
 669 
---
Q 55+21  
T 76  
 76  
---
Q 0+871  
T 871 
 871 
---
Q 888+40 
T 928 
 928 
---
Q 772+545
T 1317
 1317
---
Q 113+795
T 908 
 908 
---
Q 31+473 
T 504 
 504 
---

--------------------------------------------------
Iteration 154
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.1075e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 241+813
T 1054
 1054
---
Q 55+829 
T 884 
 884 
---
Q 754+662
T 1416
 1416
---
Q 602+810
T 1412
 1412
---
Q 22+35  
T 57  
 57  
---
Q 37+877 
T 914 
 914 
---
Q 703+31 
T 734 
 734 
---
Q 78+780 
T 858 
 858 
---
Q 940+948
T 1888
 1888
---
Q 782+319
T 1101
 1101
---

--------------------------------------------------
Iteration 155
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0375 - acc: 0.9896 - val_loss: 0.0038 - val_acc: 0.9991
Q 8+922  
T 930 
 930 
---
Q 9+546  
T 555 
 555 
---
Q 152+82 
T 234 
 234 
---
Q 141+9  
T 150 
 150 
---
Q 539+3  
T 542 
 542 
---
Q 61+667 
T 728 
 728 
---
Q 8+52   
T 60  
 60  
---
Q 435+84 
T 519 
 519 
---
Q 28+94  
T 122 
 122 
---
Q 6+646  
T 652 
 652 
---

--------------------------------------------------
Iteration 156
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 9.2601e-04 - acc: 0.9999 - val_loss: 0.0019 - val_acc: 0.9995
Q 344+29 
T 373 
 373 
---
Q 61+52  
T 113 
 113 
---
Q 12+16  
T 28  
 28  
---
Q 209+170
T 379 
 379 
---
Q 7+23   
T 30  
 30  
---
Q 508+0  
T 508 
 508 
---
Q 491+1  
T 492 
 492 
---
Q 32+196 
T 228 
 228 
---
Q 905+56 
T 961 
 961 
---
Q 69+13  
T 82  
 82  
---

--------------------------------------------------
Iteration 157
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.7565e-04 - acc: 1.0000 - val_loss: 0.0015 - val_acc: 0.9997
Q 34+694 
T 728 
 728 
---
Q 933+85 
T 1018
 1018
---
Q 10+98  
T 108 
 108 
---
Q 59+270 
T 329 
 329 
---
Q 545+87 
T 632 
 632 
---
Q 7+70   
T 77  
 77  
---
Q 6+555  
T 561 
 561 
---
Q 65+888 
T 953 
 953 
---
Q 188+147
T 335 
 335 
---
Q 92+614 
T 706 
 706 
---

--------------------------------------------------
Iteration 158
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.8824e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 719+8  
T 727 
 727 
---
Q 81+793 
T 874 
 874 
---
Q 75+756 
T 831 
 831 
---
Q 785+5  
T 790 
 790 
---
Q 158+521
T 679 
 679 
---
Q 1+619  
T 620 
 620 
---
Q 313+972
T 1285
 1285
---
Q 647+495
T 1142
 1142
---
Q 605+496
T 1101
 1101
---
Q 89+184 
T 273 
 273 
---

--------------------------------------------------
Iteration 159
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.4042e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 768+4  
T 772 
 772 
---
Q 596+823
T 1419
 1419
---
Q 21+444 
T 465 
 465 
---
Q 16+554 
T 570 
 570 
---
Q 591+0  
T 591 
 591 
---
Q 762+133
T 895 
 895 
---
Q 522+2  
T 524 
 524 
---
Q 40+97  
T 137 
 137 
---
Q 298+266
T 564 
 564 
---
Q 691+236
T 927 
 927 
---

--------------------------------------------------
Iteration 160
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.0695e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 718+86 
T 804 
 804 
---
Q 67+969 
T 1036
 1036
---
Q 166+71 
T 237 
 237 
---
Q 6+624  
T 630 
 630 
---
Q 227+86 
T 313 
 313 
---
Q 98+179 
T 277 
 277 
---
Q 112+74 
T 186 
 186 
---
Q 263+38 
T 301 
 301 
---
Q 261+2  
T 263 
 263 
---
Q 6+133  
T 139 
 139 
---

--------------------------------------------------
Iteration 161
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.8032e-04 - acc: 1.0000 - val_loss: 0.0010 - val_acc: 0.9997
Q 923+73 
T 996 
 996 
---
Q 174+15 
T 189 
 189 
---
Q 223+37 
T 260 
 260 
---
Q 606+725
T 1331
 1331
---
Q 521+22 
T 543 
 543 
---
Q 172+15 
T 187 
 187 
---
Q 860+9  
T 869 
 869 
---
Q 552+409
T 961 
 961 
---
Q 564+14 
T 578 
 578 
---
Q 562+623
T 1185
 1185
---

--------------------------------------------------
Iteration 162
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.6039e-04 - acc: 1.0000 - val_loss: 9.9766e-04 - val_acc: 0.9997
Q 49+207 
T 256 
 256 
---
Q 898+60 
T 958 
 958 
---
Q 382+47 
T 429 
 429 
---
Q 8+622  
T 630 
 630 
---
Q 765+748
T 1513
 1513
---
Q 11+293 
T 304 
 304 
---
Q 48+908 
T 956 
 956 
---
Q 58+497 
T 555 
 555 
---
Q 667+603
T 1270
 1270
---
Q 744+747
T 1491
 1491
---

--------------------------------------------------
Iteration 163
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.4241e-04 - acc: 1.0000 - val_loss: 9.9952e-04 - val_acc: 0.9997
Q 106+72 
T 178 
 178 
---
Q 690+57 
T 747 
 747 
---
Q 382+47 
T 429 
 429 
---
Q 806+157
T 963 
 963 
---
Q 535+993
T 1528
 1528
---
Q 581+75 
T 656 
 656 
---
Q 975+42 
T 1017
 1017
---
Q 78+780 
T 858 
 858 
---
Q 50+95  
T 145 
 145 
---
Q 801+97 
T 898 
 898 
---

--------------------------------------------------
Iteration 164
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.2725e-04 - acc: 1.0000 - val_loss: 0.0010 - val_acc: 0.9997
Q 774+164
T 938 
 938 
---
Q 867+944
T 1811
 1811
---
Q 13+48  
T 61  
 61  
---
Q 16+62  
T 78  
 78  
---
Q 674+33 
T 707 
 707 
---
Q 363+75 
T 438 
 438 
---
Q 7+307  
T 314 
 314 
---
Q 6+996  
T 1002
 1002
---
Q 32+363 
T 395 
 395 
---
Q 93+866 
T 959 
 959 
---

--------------------------------------------------
Iteration 165
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.1405e-04 - acc: 1.0000 - val_loss: 9.5987e-04 - val_acc: 0.9997
Q 40+49  
T 89  
 89  
---
Q 907+98 
T 1005
 1005
---
Q 56+758 
T 814 
 814 
---
Q 804+98 
T 902 
 902 
---
Q 36+858 
T 894 
 894 
---
Q 237+5  
T 242 
 242 
---
Q 91+64  
T 155 
 155 
---
Q 1+938  
T 939 
 939 
---
Q 6+343  
T 349 
 349 
---
Q 97+85  
T 182 
 182 
---

--------------------------------------------------
Iteration 166
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.0392e-04 - acc: 1.0000 - val_loss: 8.6710e-04 - val_acc: 0.9998
Q 34+694 
T 728 
 728 
---
Q 822+500
T 1322
 1322
---
Q 991+7  
T 998 
 998 
---
Q 9+557  
T 566 
 566 
---
Q 169+44 
T 213 
 213 
---
Q 735+19 
T 754 
 754 
---
Q 197+131
T 328 
 328 
---
Q 381+68 
T 449 
 449 
---
Q 42+595 
T 637 
 637 
---
Q 65+73  
T 138 
 138 
---

--------------------------------------------------
Iteration 167
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0105 - acc: 0.9974 - val_loss: 0.2101 - val_acc: 0.9476
Q 90+277 
T 367 
 367 
---
Q 340+0  
T 340 
 340 
---
Q 366+4  
T 370 
 370 
---
Q 535+993
T 1528
 1528
---
Q 60+982 
T 1042
 1042
---
Q 771+867
T 1638
 1538
---
Q 9+375  
T 384 
 384 
---
Q 769+26 
T 795 
 795 
---
Q 894+22 
T 916 
 916 
---
Q 80+6   
T 86  
 86  
---

--------------------------------------------------
Iteration 168
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0299 - acc: 0.9915 - val_loss: 0.0025 - val_acc: 0.9993
Q 897+913
T 1810
 1810
---
Q 434+717
T 1151
 1151
---
Q 16+62  
T 78  
 78  
---
Q 526+2  
T 528 
 528 
---
Q 29+429 
T 458 
 458 
---
Q 2+823  
T 825 
 825 
---
Q 533+53 
T 586 
 586 
---
Q 32+10  
T 42  
 42  
---
Q 287+9  
T 296 
 296 
---
Q 21+125 
T 146 
 146 
---

--------------------------------------------------
Iteration 169
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 6.4347e-04 - acc: 1.0000 - val_loss: 0.0016 - val_acc: 0.9997
Q 99+109 
T 208 
 208 
---
Q 44+51  
T 95  
 95  
---
Q 496+78 
T 574 
 574 
---
Q 499+534
T 1033
 1033
---
Q 312+919
T 1231
 1231
---
Q 961+580
T 1541
 1541
---
Q 346+51 
T 397 
 397 
---
Q 113+795
T 908 
 908 
---
Q 357+40 
T 397 
 397 
---
Q 43+5   
T 48  
 48  
---

--------------------------------------------------
Iteration 170
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.5476e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9998
Q 19+862 
T 881 
 881 
---
Q 44+465 
T 509 
 509 
---
Q 533+20 
T 553 
 553 
---
Q 87+30  
T 117 
 117 
---
Q 122+292
T 414 
 414 
---
Q 4+188  
T 192 
 192 
---
Q 531+232
T 763 
 763 
---
Q 888+40 
T 928 
 928 
---
Q 62+329 
T 391 
 391 
---
Q 67+4   
T 71  
 71  
---

--------------------------------------------------
Iteration 171
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.7804e-04 - acc: 1.0000 - val_loss: 0.0013 - val_acc: 0.9997
Q 66+529 
T 595 
 595 
---
Q 670+13 
T 683 
 683 
---
Q 132+50 
T 182 
 182 
---
Q 967+44 
T 1011
 1011
---
Q 7+313  
T 320 
 320 
---
Q 53+680 
T 733 
 733 
---
Q 466+896
T 1362
 1362
---
Q 285+53 
T 338 
 338 
---
Q 66+590 
T 656 
 656 
---
Q 853+567
T 1420
 1420
---

--------------------------------------------------
Iteration 172
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.3245e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9998
Q 343+247
T 590 
 590 
---
Q 337+66 
T 403 
 403 
---
Q 197+131
T 328 
 328 
---
Q 718+686
T 1404
 1404
---
Q 565+35 
T 600 
 600 
---
Q 147+43 
T 190 
 190 
---
Q 906+4  
T 910 
 910 
---
Q 28+361 
T 389 
 389 
---
Q 8+466  
T 474 
 474 
---
Q 140+73 
T 213 
 213 
---

--------------------------------------------------
Iteration 173
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.0000e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 99+0   
T 99  
 99  
---
Q 7+524  
T 531 
 531 
---
Q 157+244
T 401 
 401 
---
Q 492+485
T 977 
 977 
---
Q 206+246
T 452 
 452 
---
Q 62+248 
T 310 
 310 
---
Q 41+79  
T 120 
 120 
---
Q 32+43  
T 75  
 75  
---
Q 92+614 
T 706 
 706 
---
Q 1+536  
T 537 
 537 
---

--------------------------------------------------
Iteration 174
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.7453e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9998
Q 441+80 
T 521 
 521 
---
Q 7+716  
T 723 
 723 
---
Q 89+744 
T 833 
 833 
---
Q 120+16 
T 136 
 136 
---
Q 992+753
T 1745
 1745
---
Q 755+71 
T 826 
 826 
---
Q 623+47 
T 670 
 670 
---
Q 61+88  
T 149 
 149 
---
Q 718+83 
T 801 
 801 
---
Q 975+574
T 1549
 1549
---

--------------------------------------------------
Iteration 175
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.5390e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 139+94 
T 233 
 233 
---
Q 577+657
T 1234
 1234
---
Q 428+8  
T 436 
 436 
---
Q 89+36  
T 125 
 125 
---
Q 188+832
T 1020
 1020
---
Q 795+147
T 942 
 942 
---
Q 225+797
T 1022
 1022
---
Q 118+6  
T 124 
 124 
---
Q 663+4  
T 667 
 667 
---
Q 375+680
T 1055
 1055
---

--------------------------------------------------
Iteration 176
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.3661e-04 - acc: 1.0000 - val_loss: 0.0010 - val_acc: 0.9998
Q 849+669
T 1518
 1518
---
Q 124+5  
T 129 
 129 
---
Q 30+759 
T 789 
 789 
---
Q 53+855 
T 908 
 908 
---
Q 4+188  
T 192 
 192 
---
Q 87+531 
T 618 
 618 
---
Q 85+862 
T 947 
 947 
---
Q 589+711
T 1300
 1300
---
Q 47+972 
T 1019
 1019
---
Q 403+57 
T 460 
 460 
---

--------------------------------------------------
Iteration 177
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.2217e-04 - acc: 1.0000 - val_loss: 9.7273e-04 - val_acc: 0.9998
Q 19+651 
T 670 
 670 
---
Q 521+425
T 946 
 946 
---
Q 799+9  
T 808 
 808 
---
Q 2+610  
T 612 
 612 
---
Q 906+38 
T 944 
 944 
---
Q 769+26 
T 795 
 795 
---
Q 356+24 
T 380 
 380 
---
Q 183+622
T 805 
 805 
---
Q 75+756 
T 831 
 831 
---
Q 65+941 
T 1006
 1006
---

--------------------------------------------------
Iteration 178
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.0928e-04 - acc: 1.0000 - val_loss: 9.5509e-04 - val_acc: 0.9997
Q 231+39 
T 270 
 270 
---
Q 5+865  
T 870 
 870 
---
Q 52+992 
T 1044
 1044
---
Q 413+943
T 1356
 1356
---
Q 9+783  
T 792 
 792 
---
Q 99+289 
T 388 
 388 
---
Q 491+84 
T 575 
 575 
---
Q 41+35  
T 76  
 76  
---
Q 240+666
T 906 
 906 
---
Q 148+83 
T 231 
 231 
---

--------------------------------------------------
Iteration 179
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 9.8416e-05 - acc: 1.0000 - val_loss: 9.0127e-04 - val_acc: 0.9998
Q 98+32  
T 130 
 130 
---
Q 998+704
T 1702
 1702
---
Q 279+832
T 1111
 1111
---
Q 313+706
T 1019
 1019
---
Q 529+631
T 1160
 1160
---
Q 105+72 
T 177 
 177 
---
Q 694+2  
T 696 
 696 
---
Q 17+38  
T 55  
 55  
---
Q 766+18 
T 784 
 784 
---
Q 835+5  
T 840 
 840 
---

--------------------------------------------------
Iteration 180
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 8.9614e-05 - acc: 1.0000 - val_loss: 9.7640e-04 - val_acc: 0.9998
Q 57+53  
T 110 
 110 
---
Q 22+790 
T 812 
 812 
---
Q 744+267
T 1011
 1011
---
Q 814+43 
T 857 
 857 
---
Q 30+759 
T 789 
 789 
---
Q 957+0  
T 957 
 957 
---
Q 634+13 
T 647 
 647 
---
Q 657+256
T 913 
 913 
---
Q 69+97  
T 166 
 166 
---
Q 383+43 
T 426 
 426 
---

--------------------------------------------------
Iteration 181
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0324 - acc: 0.9917 - val_loss: 0.0058 - val_acc: 0.9983
Q 190+97 
T 287 
 287 
---
Q 129+999
T 1128
 1128
---
Q 952+351
T 1303
 1303
---
Q 390+461
T 851 
 851 
---
Q 68+258 
T 326 
 326 
---
Q 278+349
T 627 
 627 
---
Q 568+7  
T 575 
 575 
---
Q 58+589 
T 647 
 647 
---
Q 425+31 
T 456 
 456 
---
Q 9+508  
T 517 
 517 
---

--------------------------------------------------
Iteration 182
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0013 - acc: 0.9998 - val_loss: 0.0016 - val_acc: 0.9996
Q 713+614
T 1327
 1327
---
Q 113+271
T 384 
 384 
---
Q 74+658 
T 732 
 732 
---
Q 81+26  
T 107 
 107 
---
Q 270+70 
T 340 
 340 
---
Q 91+759 
T 850 
 850 
---
Q 382+13 
T 395 
 395 
---
Q 1+286  
T 287 
 287 
---
Q 363+75 
T 438 
 438 
---
Q 184+223
T 407 
 407 
---

--------------------------------------------------
Iteration 183
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.6884e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9996
Q 9+52   
T 61  
 61  
---
Q 89+510 
T 599 
 599 
---
Q 237+6  
T 243 
 243 
---
Q 42+734 
T 776 
 776 
---
Q 365+15 
T 380 
 380 
---
Q 914+63 
T 977 
 977 
---
Q 68+129 
T 197 
 197 
---
Q 5+157  
T 162 
 162 
---
Q 51+3   
T 54  
 54  
---
Q 122+99 
T 221 
 221 
---

--------------------------------------------------
Iteration 184
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 2.5577e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9996
Q 203+748
T 951 
 951 
---
Q 757+485
T 1242
 1242
---
Q 896+9  
T 905 
 905 
---
Q 578+464
T 1042
 1042
---
Q 2+843  
T 845 
 845 
---
Q 849+669
T 1518
 1518
---
Q 58+733 
T 791 
 791 
---
Q 653+366
T 1019
 1019
---
Q 25+229 
T 254 
 254 
---
Q 914+57 
T 971 
 971 
---

--------------------------------------------------
Iteration 185
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.0894e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 664+55 
T 719 
 719 
---
Q 747+922
T 1669
 1669
---
Q 10+59  
T 69  
 69  
---
Q 254+19 
T 273 
 273 
---
Q 71+561 
T 632 
 632 
---
Q 53+786 
T 839 
 839 
---
Q 50+276 
T 326 
 326 
---
Q 149+77 
T 226 
 226 
---
Q 150+95 
T 245 
 245 
---
Q 18+8   
T 26  
 26  
---

--------------------------------------------------
Iteration 186
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.7806e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9997
Q 107+198
T 305 
 305 
---
Q 314+14 
T 328 
 328 
---
Q 344+64 
T 408 
 408 
---
Q 872+135
T 1007
 1007
---
Q 52+942 
T 994 
 994 
---
Q 446+357
T 803 
 803 
---
Q 790+730
T 1520
 1520
---
Q 100+742
T 842 
 842 
---
Q 74+26  
T 100 
 100 
---
Q 835+640
T 1475
 1475
---

--------------------------------------------------
Iteration 187
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.5486e-04 - acc: 1.0000 - val_loss: 9.7700e-04 - val_acc: 0.9997
Q 794+508
T 1302
 1302
---
Q 51+189 
T 240 
 240 
---
Q 723+573
T 1296
 1296
---
Q 76+19  
T 95  
 95  
---
Q 398+9  
T 407 
 407 
---
Q 44+90  
T 134 
 134 
---
Q 570+657
T 1227
 1227
---
Q 56+41  
T 97  
 97  
---
Q 4+886  
T 890 
 880 
---
Q 67+187 
T 254 
 254 
---

--------------------------------------------------
Iteration 188
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.3622e-04 - acc: 1.0000 - val_loss: 9.8483e-04 - val_acc: 0.9997
Q 0+198  
T 198 
 198 
---
Q 119+50 
T 169 
 169 
---
Q 51+54  
T 105 
 105 
---
Q 17+226 
T 243 
 243 
---
Q 841+256
T 1097
 1097
---
Q 178+851
T 1029
 1029
---
Q 7+333  
T 340 
 340 
---
Q 148+389
T 537 
 537 
---
Q 556+95 
T 651 
 651 
---
Q 815+30 
T 845 
 845 
---

--------------------------------------------------
Iteration 189
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.2106e-04 - acc: 1.0000 - val_loss: 9.3022e-04 - val_acc: 0.9997
Q 79+83  
T 162 
 162 
---
Q 341+181
T 522 
 522 
---
Q 96+595 
T 691 
 691 
---
Q 319+58 
T 377 
 377 
---
Q 91+432 
T 523 
 523 
---
Q 56+289 
T 345 
 345 
---
Q 369+32 
T 401 
 401 
---
Q 431+445
T 876 
 876 
---
Q 338+21 
T 359 
 359 
---
Q 434+263
T 697 
 697 
---

--------------------------------------------------
Iteration 190
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 1.0793e-04 - acc: 1.0000 - val_loss: 8.7021e-04 - val_acc: 0.9997
Q 60+314 
T 374 
 374 
---
Q 2+109  
T 111 
 111 
---
Q 372+185
T 557 
 557 
---
Q 28+452 
T 480 
 480 
---
Q 49+669 
T 718 
 718 
---
Q 312+211
T 523 
 523 
---
Q 26+385 
T 411 
 411 
---
Q 529+692
T 1221
 1221
---
Q 794+41 
T 835 
 835 
---
Q 135+53 
T 188 
 188 
---

--------------------------------------------------
Iteration 191
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 19s - loss: 9.6888e-05 - acc: 1.0000 - val_loss: 9.1206e-04 - val_acc: 0.9997
Q 656+663
T 1319
 1319
---
Q 55+21  
T 76  
 76  
---
Q 12+26  
T 38  
 38  
---
Q 47+233 
T 280 
 280 
---
Q 390+461
T 851 
 851 
---
Q 1+210  
T 211 
 211 
---
Q 64+268 
T 332 
 332 
---
Q 455+4  
T 459 
 459 
---
Q 994+205
T 1199
 1199
---
Q 729+466
T 1195
 1195
---

--------------------------------------------------
Iteration 192
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 19s - loss: 8.7078e-05 - acc: 1.0000 - val_loss: 9.0645e-04 - val_acc: 0.9997
Q 80+6   
T 86  
 86  
---
Q 51+480 
T 531 
 531 
---
Q 88+452 
T 540 
 540 
---
Q 975+33 
T 1008
 1008
---
Q 770+722
T 1492
 1492
---
Q 623+19 
T 642 
 642 
---
Q 199+82 
T 281 
 281 
---
Q 117+48 
T 165 
 165 
---
Q 809+744
T 1553
 1553
---
Q 953+0  
T 953 
 953 
---

--------------------------------------------------
Iteration 193
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 7.8512e-05 - acc: 1.0000 - val_loss: 8.3686e-04 - val_acc: 0.9997
Q 575+46 
T 621 
 621 
---
Q 722+415
T 1137
 1137
---
Q 86+840 
T 926 
 926 
---
Q 117+550
T 667 
 667 
---
Q 538+736
T 1274
 1274
---
Q 550+806
T 1356
 1356
---
Q 28+37  
T 65  
 65  
---
Q 672+82 
T 754 
 754 
---
Q 957+310
T 1267
 1267
---
Q 178+851
T 1029
 1029
---

--------------------------------------------------
Iteration 194
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 7.4032e-05 - acc: 1.0000 - val_loss: 7.6828e-04 - val_acc: 0.9997
Q 197+240
T 437 
 437 
---
Q 79+695 
T 774 
 774 
---
Q 138+939
T 1077
 1077
---
Q 383+43 
T 426 
 426 
---
Q 870+445
T 1315
 1315
---
Q 37+537 
T 574 
 574 
---
Q 65+888 
T 953 
 953 
---
Q 86+806 
T 892 
 892 
---
Q 49+669 
T 718 
 718 
---
Q 28+838 
T 866 
 866 
---

--------------------------------------------------
Iteration 195
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 0.0310 - acc: 0.9916 - val_loss: 0.0048 - val_acc: 0.9986
Q 810+55 
T 865 
 865 
---
Q 717+747
T 1464
 1464
---
Q 37+532 
T 569 
 569 
---
Q 90+238 
T 328 
 328 
---
Q 929+424
T 1353
 1353
---
Q 54+95  
T 149 
 149 
---
Q 884+34 
T 918 
 918 
---
Q 57+72  
T 129 
 129 
---
Q 138+335
T 473 
 473 
---
Q 207+86 
T 293 
 293 
---

--------------------------------------------------
Iteration 196
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 0.0013 - acc: 0.9998 - val_loss: 0.0015 - val_acc: 0.9997
Q 489+197
T 686 
 686 
---
Q 81+14  
T 95  
 95  
---
Q 94+17  
T 111 
 111 
---
Q 435+84 
T 519 
 519 
---
Q 88+292 
T 380 
 380 
---
Q 5+961  
T 966 
 966 
---
Q 43+591 
T 634 
 634 
---
Q 39+345 
T 384 
 384 
---
Q 942+112
T 1054
 1054
---
Q 90+277 
T 367 
 367 
---

--------------------------------------------------
Iteration 197
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 3.4687e-04 - acc: 1.0000 - val_loss: 0.0012 - val_acc: 0.9998
Q 23+432 
T 455 
 455 
---
Q 320+649
T 969 
 969 
---
Q 67+35  
T 102 
 102 
---
Q 726+332
T 1058
 1058
---
Q 109+375
T 484 
 484 
---
Q 435+181
T 616 
 616 
---
Q 134+25 
T 159 
 159 
---
Q 673+224
T 897 
 897 
---
Q 765+213
T 978 
 978 
---
Q 446+30 
T 476 
 476 
---

--------------------------------------------------
Iteration 198
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 17s - loss: 2.3944e-04 - acc: 1.0000 - val_loss: 0.0011 - val_acc: 0.9998
Q 15+400 
T 415 
 415 
---
Q 40+371 
T 411 
 411 
---
Q 70+600 
T 670 
 670 
---
Q 453+11 
T 464 
 464 
---
Q 718+83 
T 801 
 801 
---
Q 261+969
T 1230
 1230
---
Q 77+39  
T 116 
 116 
---
Q 560+53 
T 613 
 613 
---
Q 30+482 
T 512 
 512 
---
Q 195+74 
T 269 
 269 
---

--------------------------------------------------
Iteration 199
Train on 45000 samples, validate on 5000 samples
Epoch 1/1
45000/45000 [==============================] - 18s - loss: 1.9311e-04 - acc: 1.0000 - val_loss: 0.0010 - val_acc: 0.9998
Q 40+265 
T 305 
 305 
---
Q 151+74 
T 225 
 225 
---
Q 52+617 
T 669 
 669 
---
Q 36+193 
T 229 
 229 
---
Q 198+566
T 764 
 764 
---
Q 722+754
T 1476
 1476
---
Q 29+597 
T 626 
 626 
---
Q 793+30 
T 823 
 823 
---
Q 720+23 
T 743 
 743 
---
Q 99+298 
T 397 
 397 
---

In [ ]: