In [1]:
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy.io import loadmat
from scipy.optimize import minimize
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.preprocessing import PolynomialFeatures
pd.set_option('display.notebook_repr_html', False)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 150)
pd.set_option('display.max_seq_items', None)
#%config InlineBackend.figure_formats = {'pdf',}
%matplotlib inline
import seaborn as sns
sns.set_context('notebook')
sns.set_style('white')
In [2]:
data = loadmat('am-T2-dados/ex5data1.mat')
data.keys()
Out[2]:
In [89]:
y_train = data['y']
X_train = np.c_[np.ones_like(data['X']), data['X']]
yval = data['yval']
Xval = np.c_[np.ones_like(data['Xval']), data['Xval']]
print('X_train:', X_train.shape)
print('y_train:', y_train.shape)
print('Xval:', Xval.shape)
print('yval:', yval.shape)
In [90]:
plt.scatter(X_train[:,1], y_train, s=50, c='r', marker='x', linewidths=1)
plt.xlabel('Change in water level (x)')
plt.ylabel('Water flowing out of the dam (y)')
plt.ylim(ymin=0);
In [91]:
def linearRegCostFunction(theta, X, y, Lambda):
m = y.size
H = X.dot(theta)
J = (1/(2*m)) * np.sum(np.square(H-y))
Reg = (Lambda/(2*m)) * np.sum(np.square(theta))
return J+Lambda
In [92]:
def lrgradientReg(theta, X, y, reg):
m = y.size
h = X.dot(theta.reshape(-1,1))
grad = (1/m)*(X.T.dot(h-y))+ (reg/m)*np.r_[[[0]],theta[1:].reshape(-1,1)]
return(grad.flatten())
In [98]:
initial_theta = np.ones((X_train.shape[1],1))
cost = linearRegCostFunction(initial_theta, X_train, y_train, 0)
gradient = lrgradientReg(initial_theta, X_train, y_train, 0)
print(cost)
print(gradient)
In [99]:
def trainLinearReg(X, y, reg):
#initial_theta = np.ones((X.shape[1],1))
initial_theta = np.array([[15],[15]])
# For some reason the minimize() function does not converge when using zeros as initial theta.
res = minimize(linearRegCostFunction, initial_theta, args=(X,y,reg), method=None, jac=lrgradientReg,
options={'maxiter':5000})
return(res)
In [100]:
fit = trainLinearReg(X_train, y_train, 0)
fit
Out[100]:
In [96]:
regr = LinearRegression(fit_intercept=False)
regr.fit(X_train, y_train.ravel())
print(regr.coef_)
print(linearRegCostFunction(regr.coef_, X_train, y_train, 0))
In [97]:
plt.plot(np.linspace(-50,40), (fit.x[0]+ (fit.x[1]*np.linspace(-50,40))), label='Scipy optimize')
plt.scatter(X_train[:,1], y_train, s=50, c='r', marker='x', linewidths=1, label='Water flow')
plt.xlabel('Change in water level (x)')
plt.ylabel('Water flowing out of the dam (y)')
plt.ylim(ymin=-5)
plt.xlim(xmin=-50)
plt.legend(loc=4);
In [12]:
def learningCurve(X, y, Xval, yval, reg):
m = y.size
error_train = np.zeros((m, 1))
error_val = np.zeros((m, 1))
for i in np.arange(m):
res = trainLinearReg(X[:i+1], y[:i+1], reg)
error_train[i] = linearRegCostFunction(res.x, X[:i+1], y[:i+1], reg)
error_val[i] = linearRegCostFunction(res.x, Xval, yval, reg)
return(error_train, error_val)
In [13]:
t_error, v_error = learningCurve(X_train, y_train, Xval, yval, 0)
In [16]:
plt.plot(np.arange(1,13), t_error, label='Train')
plt.plot(np.arange(1,13), v_error, label='Cross Validation')
plt.title('Learning curve for linear regression')
plt.xlabel('Number of training examples')
plt.ylabel('Error')
plt.legend();
In [103]:
poly = PolynomialFeatures(degree=8)
X_train_poly = poly.fit_transform(X_train[:,1].reshape(-1,1))
regr2 = LinearRegression()
regr2.fit(X_train_poly, y_train)
regr3 = Ridge(alpha=20)
regr3.fit(X_train_poly, y_train)
# plot range for x
plot_x = np.linspace(-60,45)
# using coefficients to calculate y
plot_y = regr2.intercept_+ np.sum(regr2.coef_*poly.fit_transform(plot_x.reshape(-1,1)), axis=1)
plot_y2 = regr3.intercept_ + np.sum(regr3.coef_*poly.fit_transform(plot_x.reshape(-1,1)), axis=1)
plt.plot(plot_x, plot_y, label='Scikit-learn LinearRegression')
plt.plot(plot_x, plot_y2, label='Scikit-learn Ridge (alpha={})'.format(regr3.alpha))
plt.scatter(X_train[:,1], y_train, s=50, c='r', marker='x', linewidths=1)
plt.xlabel('Change in water level (x)')
plt.ylabel('Water flowing out of the dam (y)')
plt.title('Polynomial regression degree 8')
plt.legend(loc=4);
In [ ]: