In [8]:
# Importing libraries
import pandas as pd
import numpy as np
import theano
import theano.tensor as T
import cPickle
In [11]:
# Loading data
df = pd.read_csv('../data/test.csv')
df = df.astype(np.float64)
In [16]:
# Loading model
from logistic_regression_model import *
my_model_file = file('models/log_reg.model', 'rb')
my_model = cPickle.load(my_model_file)
my_model_file.close()
In [23]:
# Predicting categories
raw_pred = my_model.predict(df)
pred = [np.argmax(raw_pred[i,:]) for i in xrange(raw_pred.shape[0])]
print pred[0:10]
In [24]:
# Storing prediction in a csv file
with open('results.csv', 'w') as of:
of.write("ImageId,label\n")
for x in enumerate(pred, start=1):
of.write("%s,%s\n" % x)