Type 0: 35
Type 1: 65
Initial Loss: 12.5
Loss Before: 12.5
Loss After [i = 0]: 12.1601229227
[ 0.0375 0.00395 0.04505]
Loss Before: 4.0327324113
Loss After [i = 1000]: 4.03255300491
[ 1.96195027 1.16639143 4.75820348]
Loss Before: 3.94645855567
Loss After [i = 2000]: 3.94641942338
[ 2.30367262 1.42195545 5.557882 ]
Loss Before: 3.92265656135
Loss After [i = 3000]: 3.92264271993
[ 2.48647718 1.55383724 5.98422667]
Loss Before: 3.91340892145
Loss After [i = 4000]: 3.91340296967
[ 2.60103167 1.63491233 6.25137564]
Loss Before: 3.90922846367
Loss After [i = 5000]: 3.90922562267
[ 2.67822751 1.68891743 6.43147213]
Loss Before: 3.90717137096
Loss After [i = 6000]: 3.90716992584
[ 2.73244227 1.72655771 6.55800519]
Loss Before: 3.90610395777
Loss After [i = 7000]: 3.90610319142
[ 2.7715221 1.75354803 6.64924495]
Loss Before: 3.90553012685
Loss After [i = 8000]: 3.90552970868
[ 2.80018792 1.77327215 6.71618858]
Loss Before: 3.90521396202
Loss After [i = 9000]: 3.90521372917
[ 2.82147191 1.78787735 6.76590324]
Loss Before: 3.90503667925
Loss After [i = 10000]: 3.90503654769
[ 2.83741288 1.79879426 6.80314348]
Loss Before: 3.90493599371
Loss After [i = 11000]: 3.90493591857
[ 2.84942792 1.80701031 6.83121549]
Loss Before: 3.90487826914
Loss After [i = 12000]: 3.90487822588
[ 2.85852635 1.81322497 6.85247497]
Loss Before: 3.90484494149
Loss After [i = 13000]: 3.90484491644
[ 2.8654402 1.81794347 6.86863105]
Loss Before: 3.90482559783
Loss After [i = 14000]: 3.90482558325
[ 2.87070779 1.82153613 6.8809408 ]
Loss Before: 3.90481432581
Loss After [i = 15000]: 3.9048143173
[ 2.87472903 1.82427742 6.89033837]
Loss Before: 3.90480773748
Loss After [i = 16000]: 3.9048077325
[ 2.87780343 1.82637247 6.8975234 ]
Loss Before: 3.90480387785
Loss After [i = 17000]: 3.90480387493
[ 2.88015662 1.82797558 6.90302305]
Loss Before: 3.90480161281
Loss After [i = 18000]: 3.90480161109
[ 2.88195935 1.82920343 6.90723628]
Loss Before: 3.90480028178
Loss After [i = 19000]: 3.90480028077
[ 2.88334129 1.83014452 6.91046613]
Loss Before: 3.90479949882
Loss After [i = 20000]: 3.90479949822
[ 2.88440121 1.83086623 6.91294337]
Loss Before: 3.90479903788
Loss After [i = 21000]: 3.90479903753
[ 2.88521446 1.83141992 6.91484411]
Loss Before: 3.90479876637
Loss After [i = 22000]: 3.90479876616
[ 2.88583863 1.83184485 6.91630294]
Loss Before: 3.90479860636
Loss After [i = 23000]: 3.90479860624
[ 2.88631779 1.83217104 6.91742286]
Loss Before: 3.90479851203
Loss After [i = 24000]: 3.90479851196
[ 2.8866857 1.83242148 6.91828275]
Loss Before: 3.9047984564
Loss After [i = 25000]: 3.90479845636
[ 2.88696822 1.83261379 6.91894308]
Loss Before: 3.90479842359
Loss After [i = 26000]: 3.90479842357
[ 2.8871852 1.83276148 6.91945021]
Loss Before: 3.90479840424
Loss After [i = 27000]: 3.90479840423
[ 2.88735185 1.83287491 6.91983971]
Loss Before: 3.90479839282
Loss After [i = 28000]: 3.90479839281
[ 2.88747985 1.83296204 6.92013889]
Loss Before: 3.90479838608
Loss After [i = 29000]: 3.90479838608
[ 2.88757818 1.83302897 6.92036871]
Loss Before: 3.90479838211
Loss After [i = 30000]: 3.90479838211
[ 2.8876537 1.83308037 6.92054524]
Loss Before: 3.90479837976
Loss After [i = 31000]: 3.90479837976
[ 2.88771173 1.83311987 6.92068085]
Loss Before: 3.90479837838
Loss After [i = 32000]: 3.90479837838
[ 2.8877563 1.8331502 6.92078503]
Loss Before: 3.90479837756
Loss After [i = 33000]: 3.90479837756
[ 2.88779054 1.83317351 6.92086506]
Loss Before: 3.90479837708
Loss After [i = 34000]: 3.90479837708
[ 2.88781684 1.83319141 6.92092654]
Loss Before: 3.90479837679
Loss After [i = 35000]: 3.90479837679
[ 2.88783705 1.83320517 6.92097377]
Loss Before: 3.90479837663
Loss After [i = 36000]: 3.90479837663
[ 2.88785258 1.83321573 6.92101006]
Loss Before: 3.90479837653
Loss After [i = 37000]: 3.90479837653
[ 2.8878645 1.83322385 6.92103793]
Loss Before: 3.90479837647
Loss After [i = 38000]: 3.90479837647
[ 2.88787367 1.83323009 6.92105935]
Loss Before: 3.90479837643
Loss After [i = 39000]: 3.90479837643
[ 2.8878807 1.83323488 6.9210758 ]
Loss Before: 3.90479837641
Loss After [i = 40000]: 3.90479837641
[ 2.88788611 1.83323856 6.92108844]
Loss Before: 3.9047983764
Loss After [i = 41000]: 3.9047983764
[ 2.88789027 1.83324139 6.92109815]
Loss Before: 3.90479837639
Loss After [i = 42000]: 3.90479837639
[ 2.88789346 1.83324356 6.92110561]
Loss Before: 3.90479837639
Loss After [i = 43000]: 3.90479837639
[ 2.88789591 1.83324523 6.92111134]
Loss Before: 3.90479837639
Loss After [i = 44000]: 3.90479837639
[ 2.8878978 1.83324651 6.92111575]
Loss Before: 3.90479837639
Loss After [i = 45000]: 3.90479837639
[ 2.88789924 1.83324749 6.92111913]
Loss Before: 3.90479837639
Loss After [i = 46000]: 3.90479837639
[ 2.88790035 1.83324825 6.92112173]
Loss Before: 3.90479837638
Loss After [i = 47000]: 3.90479837638
[ 2.88790121 1.83324883 6.92112372]
Loss Before: 3.90479837638
Loss After [i = 48000]: 3.90479837638
[ 2.88790186 1.83324928 6.92112526]
Loss Before: 3.90479837638
Loss After [i = 49000]: 3.90479837638
[ 2.88790237 1.83324962 6.92112644]
Trained Loss: 3.90479837638
Weights: [ 2.88790276 1.83324989 6.92112734]
[ 2.88790276 1.83324989 6.92112734]
Line
B: -0.417259011989
XCoef: -0.264877352374