Type 0: 35
Type 1: 65
Boundary Hunter: 0
Initial Loss: 1.63204891482
Loss Before: 1.63204891482
Loss After [i = 0]: 1.63177092365
[-0.39671528 -0.20921633 0.43178954]
Loss Before: 1.47661871083
Loss After [i = 1000]: 1.47637251409
[-0.38363837 -0.26778192 0.28139062]
Loss Before: 1.92949262018
Loss After [i = 2000]: 1.92917428007
[-0.36813708 -0.32515023 0.12942068]
Loss Before: 1.9262833571
Loss After [i = 3000]: 1.92609961192
[-0.33676569 -0.37688884 -0.01733495]
Loss Before: 1.62486207501
Loss After [i = 4000]: 1.62475450205
[-0.30745253 -0.41262915 -0.12790452]
Loss Before: 1.62910912867
Loss After [i = 5000]: 1.62906299569
[-0.2773988 -0.4341265 -0.20129866]
Loss Before: 1.62270669344
Loss After [i = 6000]: 1.62269168936
[-0.24650195 -0.44421684 -0.23925384]
Loss Before: 1.69421514509
Loss After [i = 7000]: 1.69420127119
[-0.21159601 -0.44737463 -0.25282676]
Loss Before: 1.68046762413
Loss After [i = 8000]: 1.68045399952
[-0.1750584 -0.44857226 -0.25901199]
Loss Before: 1.66695923437
Loss After [i = 9000]: 1.66694583962
[-0.13874726 -0.44945462 -0.26462529]
Trained Loss: 1.65367297772
Weights: [-0.10269841 -0.45007203 -0.26972778]
Boundary Hunter: 1
Initial Loss: 2.53941709941
Loss Before: 2.53941709941
Loss After [i = 0]: 2.53930519247
[ 0.22902056 0.48837608 -0.21189279]
Loss Before: 2.3962357145
Loss After [i = 1000]: 2.39618832264
[ 0.1932579 0.50465662 -0.2884653 ]
Loss Before: 2.15242586398
Loss After [i = 2000]: 2.15240624956
[ 0.15690714 0.51163133 -0.32777545]
Loss Before: 2.13372580379
Loss After [i = 3000]: 2.13370793959
[ 0.12094239 0.51494136 -0.35153468]
Loss Before: 2.2640451613
Loss After [i = 4000]: 2.26402931765
[ 0.08265031 0.51717256 -0.37287914]
Loss Before: 2.24857605712
Loss After [i = 5000]: 2.2485609394
[ 0.04567609 0.51803571 -0.38624751]
Loss Before: 2.14177306104
Loss After [i = 6000]: 2.14176280054
[ 0.0127634 0.51815759 -0.38958202]
Loss Before: 2.13159684872
Loss After [i = 7000]: 2.13158675675
[-0.01910208 0.51815283 -0.39106303]
Loss Before: 2.121588498
Loss After [i = 8000]: 2.1215785732
[-0.0507022 0.51810047 -0.39256172]
Loss Before: 2.11174661245
Loss After [i = 9000]: 2.1117368534
[-0.08203709 0.51800012 -0.39407322]
Trained Loss: 2.10206972538
Weights: [-0.11307607 0.51785201 -0.3955912 ]
Boundary Hunter: 2
Initial Loss: 1.57251838808
Loss Before: 1.57251838808
Loss After [i = 0]: 1.57228737387
[ 0.09411633 -0.23900396 0.37296391]
Loss Before: 1.43732007456
Loss After [i = 1000]: 1.4371451118
[ 0.10586394 -0.2248203 0.23072084]
Loss Before: 1.5409057692
Loss After [i = 2000]: 1.54083446495
[ 0.1163416 -0.21135172 0.10994913]
Loss Before: 1.7108418076
Loss After [i = 3000]: 1.71077549335
[ 0.126206 -0.202234 0.03485385]
Loss Before: 1.85277985139
Loss After [i = 4000]: 1.85269953418
[ 0.14238671 -0.18872528 -0.06602894]
Loss Before: 1.71696968012
Loss After [i = 5000]: 1.7169387375
[ 0.16249258 -0.17930927 -0.12824186]
Loss Before: 1.77547179346
Loss After [i = 6000]: 1.77546476127
[ 0.18001334 -0.17422591 -0.15816985]
Loss Before: 1.84232467058
Loss After [i = 7000]: 1.84232091716
[ 0.1963891 -0.17201562 -0.16995927]
Loss Before: 1.8387156717
Loss After [i = 8000]: 1.8387121979
[ 0.21267197 -0.17005785 -0.17953955]
Loss Before: 1.83535988277
Loss After [i = 9000]: 1.8353566377
[ 0.22884149 -0.16820485 -0.18794014]
Trained Loss: 1.83221192337
Weights: [ 0.2448754 -0.16646609 -0.19528651]