In [1]:
include("HDStat.jl")
using HDStat, PyPlot
In [34]:
xs = rand(ARMPModel(2, 200, 0.95))
xf = rand(ARMPModel(2, 200, 0.05))
Out[34]:
In [35]:
figure(figsize=(5,3))
subplot(211)
plot(xs[1, :]', color="k")
subplot(212)
plot(xf[1, :]', color="k")
Out[35]:
In [57]:
figure(figsize=(4, 4))
imshow(randn(100, 70), cmap="RdBu", interpolation="nearest")
Out[57]:
In [53]:
figure(figsize=(4, 4))
imshow(eye(40)[1:20, randperm(40)], cmap="Blues", interpolation="nearest", )
Out[53]:
In [83]:
m = ARMPModel(400, 200, 0.5)
z = HDStat.zFunc(m)
l = -1 / m.c * (1 + m.phi)^2 - sqrt(eps(Float64))
u = -1 / m.c * (1 - m.phi)^2 + sqrt(eps(Float64))
Out[83]:
In [95]:
x = linspace(-20, - 500, 100)
plot(x, map(z, x))
Out[95]:
In [1]:
using PyPlot
n, m, k = 5000, 2000, 40
U = qr(randn(n, k))[1]
S = eye(n)[randperm(n)[1:m], :]
A = (S * U * U' * S')
e = sort(real(eig(A)[1]))
tp, tm = (sqrt(m * k / n / n) + sqrt((1 - m / n) * (1 - k / n)))^2, (sqrt(m * k / n / n) - sqrt((1 - m / n) * (1 - k / n)))^2
mu(t) = sqrt((tp - t) * (t - tm)) / 2 / pi / m * n / t / (1 - t)
x = linspace(tm, tp, 101)
y = map(mu, x)
figure(figsize=(4, 3))
plt.hist(e, normed=true, histtype="step", bins=40)
plot(1 - x, y, linewidth=2, color="k")
axvline(1 - tp, linestyle="--", linewidth=2)
axvline(1 - tm, linestyle="--", linewidth=2)
ylim([0, maximum(y) * 1.2])
Out[1]:
In [2]:
figure(figsize=(4, 3))
k = 0.01
m = linspace(k, 1, 101)
plot(m, 1 - (sqrt(m * k)+ sqrt((1 - m) * (1 - k)).^2).^2)
Out[2]:
In [55]:
(sqrt(k / n) + sqrt((n / m - 1) * (1 - k / n)))^2
Out[55]:
In [17]:
m, k, n = 2000, 40, 5000
function trial(a)
A = qr(randn(n, k))[1][randperm(n)[1:m], :]
X = A * A'
1 - trace(A' * inv(X + 1 / a * eye(m)) * A) / k
end
x = logspace(0, 2, 100);
y = map(trial, x);
Out[17]:
In [23]:
using PyPlot
plot(1 ./ x, y, ".-")
# xscale("log")
Out[23]:
In [ ]:
In [35]:
using PyPlot
alpha = linspace(0, 6.28, 101)
beta = linspace(0, 6.28, 101)'
coef = randn(4)
coef = rand(2) * 2 * 3.1415926
f = 0
f = randn() .* (cos(alpha + coef[1]) + 1) .* (beta + coef[2])
# f = coef[1] .* cos(alpha) .* cos(beta)
# f += coef[2] .* cos(alpha) .* sin(beta)
# f += coef[3] .* sin(alpha) .* cos(beta)
# f += coef[4] .* sin(alpha) .* sin(beta)
imshow(f)
Out[35]:
In [32]:
size(coef[1] .* cos(alpha) .* sin(beta))
Out[32]:
In [ ]:
In [ ]: