Primero, hay que incluir los paquetes pandas, numpy, scipy y plotly. Para crear las credenciales para plotly, de debe ir a https://plot.ly/settings/api. Luego, el username y el api_key se deben guardar en el archivo ~/.plotly/.credentials
In [8]:
import pandas as pd
import numpy as np
import scipy as sp
import plotly.plotly as py
import plotly.figure_factory as ff
import plotly
plotly.tools.set_credentials_file(username='gastudillo', api_key='OiqcwUGj4Jmtn1KtY6oR')
Luego, importar los datos
In [9]:
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/school_earnings.csv")
In [10]:
table = ff.create_table(df)
In [12]:
py.iplot(table, filename='table1')
Out[12]:
In [13]:
schools = df.School
In [18]:
print(schools[0],";" ,schools[1])
La función std() calcula la desviación estándar de cada columna
In [19]:
df.std()
Out[19]:
La función mean() calcula la desviación estándar de cada columna
In [21]:
df.mean()
Out[21]:
Para generar gráficos, hay que importar los tipos de gráficos disponibles:
In [23]:
from plotly.graph_objs import *
Luego, se puede generar, por ejemplo, un gráfico de barra
In [24]:
data = [Bar(x=df.School,
y=df.gap)]
In [26]:
py.iplot(data, filename='basic_bar')
Out[26]:
In [30]:
trace_women = Bar(x=df.School,
y=df.Women,
name='Women',
marker=dict(color='#ffcdd2'))
trace_men = Bar(x=df.School,
y=df.Men,
name='Men',
marker=dict(color='#A2D5F2'))
trace_gap = Bar(x=df.School,
y=df.gap,
name='Gap',
marker=dict(color='#59606D'))
data = [trace_women, trace_men, trace_gap]
layout = Layout(title="Average Earnings for Graduates",
xaxis=dict(title='School'),
yaxis=dict(title='Salary (in thousands)'))
fig = Figure(data=data, layout=layout)
py.iplot(fig, filename='simple_styled_bar')
Out[30]:
In [ ]: