In [ ]:
import pandas as pd
from datetime import datetime
import glob
from collections import namedtuple
import operator
from functools import reduce
In [ ]:
abbrevs = {"RR": {"names": ("Niederschlag", "Niederschlag_Indikator"), "cols": (3, 4)},
"TU": {"names": ("temp", "luftfeuchte"), "cols": (3, 4)},
# "CS": namedtuple(names=("bedeckungsgrad",), cols=(),
"P0": {"names": ("luftdruck", "P0"), "cols": (3, 4)},
"SD": {"names": ("sonnenschein",), "cols": (3,)},
# "N": namedtuple(names=("bedeckungsgrad",
"EB": {"names": ("erdbodentemp",), "cols": (4, 5, 6, 7, 8)},
"FF": {"names": ("windgeschwindigkeit", "windrichtung",), "cols": (3, 4)},
}
# "VV": "sichtweite"}
In [ ]:
for abbr in abbrevs:
fname, = glob.glob(f"*{abbr}*hist/produkt*.txt")
abbrevs[abbr]["filename"] = fname
In [ ]:
def parser(date_string):
return datetime.strptime(date_string, "%Y%m%d%H")
def get_data(fname, **kwargs):
data = pd.read_table(fname, sep=";", **kwargs)
print(data.columns)
data.MESS_DATUM = pd.to_datetime(data.MESS_DATUM, format="%Y%m%d%H")
return data
In [ ]:
for abbr in abbrevs:
print(abbr)
fname = abbrevs[abbr]["filename"]
print(fname)
df = get_data(fname)
df
In [ ]:
df = pd.read_table("stundenwerte_RR_02932_19950901_20171231_hist/produkt_rr_stunde_19950901_20171231_02932.txt", sep=";")
df.MESS_DATUM = pd.to_datetime(df.MESS_DATUM, format="%Y%m%d%H")
df.set_index("MESS_DATUM")
In [ ]: