Rupture distances (Rrup, Rx, Rjb) in openquake.hazardlib

LICENSE Copyright (c) 2014, GEM Foundation, G. Weatherill, M. Pagani, D. Monelli. The notebook is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. You should have received a copy of the GNU Affero General Public License along with OpenQuake. If not, see DISCLAIMER The notebook provided herein is released as a prototype implementation on behalf of scientists and engineers working within the GEM Foundation (Global Earthquake Model). It is distributed for the purpose of open collaboration and in the hope that it will be useful to the scientific, engineering, disaster risk and software design communities. The software is NOT distributed as part of GEM's OpenQuake suite (http://www.globalquakemodel.org/openquake) and must be considered as a separate entity. The software provided herein is designed and implemented by scientific staff. It is not developed to the design standards, nor subject to same level of critical review by professional software developers, as GEM's OpenQuake software suite. Feedback and contribution to the software is welcome, and can be directed to the hazard scientific staff of the GEM Model Facility (hazard@globalquakemodel.org). The notebook is therefore distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. The GEM Foundation, and the authors of the software, assume no liability for use of the software.

In [1]:
%matplotlib inline

from openquake.hazardlib.geo import (
    Point, Line, PlanarSurface, MultiSurface, SimpleFaultSurface,
    ComplexFaultSurface, RectangularMesh
)

import numpy
from matplotlib import pyplot
from mpl_toolkits.basemap import Basemap

In [2]:
def get_grid_and_map_proj(surf, buf=0.3, delta=0.001):
    """
    Return grid of nodes and map projection specific to surface
    """
    min_lon, max_lon, max_lat, min_lat = surf.get_bounding_box()
    
    min_lon -= buf
    max_lon += buf
    min_lat -= buf
    max_lat += buf

    lons = numpy.arange(min_lon, max_lon + delta, delta)
    lats = numpy.arange(min_lat, max_lat + delta, delta)
    lons, lats = numpy.meshgrid(lons, lats)
    mesh = RectangularMesh(lons=lons, lats=lats, depths=None)
    
    m = Basemap(projection='merc', llcrnrlat=numpy.min(lats), urcrnrlat=numpy.max(lats),
                llcrnrlon=numpy.min(lons), urcrnrlon=numpy.max(lons), resolution='l')
    
    return mesh, m

Distances to single Planar Surface


In [3]:
# define planar surface
surf= PlanarSurface(
    mesh_spacing=2., strike=3., dip=40.,
    top_left = Point(depth=2.0, latitude=36.539, longitude=137.874),
    top_right = Point(depth=2.0, latitude=36.7680117889, longitude=137.888982562),
    bottom_left = Point(depth=14.8557521937, latitude=36.5316665297, longitude=138.045238973),
    bottom_right = Point(depth=14.8557521937, latitude=36.7606772927, longitude=138.060731463)
)

# get grid of points for which to calculate distances and associated map projection
mesh, m = get_grid_and_map_proj(surf)
x, y = m(mesh.lons, mesh.lats)

In [4]:
# extract coordinates of rupture surface boundary
boundary_lons = [
    surf.top_left.longitude, surf.top_right.longitude,
    surf.bottom_right.longitude, surf.bottom_left.longitude, surf.top_left.longitude
]
boundary_lats = [
    surf.top_left.latitude, surf.top_right.latitude,
    surf.bottom_right.latitude, surf.bottom_left.latitude, surf.top_left.latitude
]
boundary_x, boundary_y = m(boundary_lons, boundary_lats)

In [6]:
# compute and plot Rrup
r_rup = surf.get_min_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_rup, 100)
#m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.1), labels=[True, False, False, True])
#m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.1), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rrup', fontsize=20)


Out[6]:
<matplotlib.text.Text at 0x5481190>

In [7]:
# compute and plot Rjb
r_jb = surf.get_joyner_boore_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_jb, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.1), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.1), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rjb', fontsize=20)


Out[7]:
<matplotlib.text.Text at 0x64b2710>

In [8]:
# compute and plot Rx
r_x = surf.get_rx_distance(mesh)

fig = pyplot.figure(figsize=(9,9))
m.plot(boundary_x, boundary_y, linewidth=3, color='black')
m.contourf(x, y, r_x, 100, cmap='RdBu')
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.1), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.1), labels=[True, False, False, True])
m.colorbar()
pyplot.clim((- numpy.max(r_x), numpy.max(r_x)))
pyplot.title('Rx', fontsize=20)


Out[8]:
<matplotlib.text.Text at 0x7e285d0>

Distances to Simple Fault Surface


In [9]:
# create Simple Fault Surface
surf = SimpleFaultSurface.from_fault_data(
    fault_trace=Line([Point(9.21602706445, 45.1555287905), Point(9.25645636929, 45.1877167851),
                  Point(9.29688464252, 45.2199047798), Point(9.35715705075, 45.2398017764),
                  Point(9.42902686305, 45.2401237764), Point(9.47246500782, 45.2381597767),
                  Point(9.51590215304, 45.236194777), Point(9.56736930079, 45.2307927779),
                  Point(9.61883544823, 45.2253897788), Point(9.67030259419, 45.2199877797),
                  Point(9.72270625188, 45.2033947825), Point(9.77510990175, 45.1868007853),
                  Point(9.83238881096, 45.1680237884), Point(9.88966771001, 45.1492457915),
                  Point(9.94694559775, 45.1304687947), Point(10.0042244753, 45.1116907978)]),
    upper_seismogenic_depth=2.,
    lower_seismogenic_depth=7.,
    dip=30.,
    mesh_spacing=4.
)

# get grid of points for which to calculate distances and associated map projection
mesh, m = get_grid_and_map_proj(surf, delta=0.002)
x, y = m(mesh.lons, mesh.lats)

In [10]:
# extract coordinates of rupture surface boundary
rup_mesh = surf.get_mesh()
boundary_lons = numpy.concatenate(
    (rup_mesh.lons[0, :], rup_mesh.lons[1:, -1], rup_mesh.lons[-1,:-1][::-1], rup_mesh.lons[:-1, 0][::-1])
)
boundary_lats = numpy.concatenate(
    (rup_mesh.lats[0, :], rup_mesh.lats[1:, -1], rup_mesh.lats[-1,:-1][::-1], rup_mesh.lats[:-1, 0][::-1])
)
boundary_x, boundary_y = m(boundary_lons, boundary_lats)

In [11]:
# compute and plot Rrup
r_rup = surf.get_min_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_rup, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.2), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.2), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rrup', fontsize=20)


Out[11]:
<matplotlib.text.Text at 0x969c190>

In [13]:
# compute and plot Rjb
r_jb = surf.get_joyner_boore_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_jb, 100)
#m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.2), labels=[True, False, False, True])
#m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.2), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rjb', fontsize=20)


Out[13]:
<matplotlib.text.Text at 0xae53c10>

In [14]:

Distances to Complex Fault Surface


In [15]:
top_edge = Line([Point(144.069555556, 39.7059999996, 9.202), Point(143.987666642, 39.0726212093, 9.202),
                 Point(143.844804987, 38.4446225095, 9.202), Point(143.715121187, 37.8147879271, 9.202),
                 Point(143.452451355, 37.2149977193, 9.202), Point(143.086155668, 36.6503300815, 9.202),
                 Point(142.589773574, 36.1569466634, 9.202), Point(142.202909091, 35.606, 9.202)])

bottom_edge = Line([Point(142.0450625, 39.7059999997, 48.202), Point(141.970993342, 39.1530522533, 48.202),
                    Point(141.893707006, 38.6004781864, 48.202), Point(141.734990146, 38.0590949727, 48.202),
                    Point(141.52384879, 37.5292617122, 48.202), Point(141.2114751, 37.0322180634, 48.202),
                    Point(140.900140283, 36.5353773475, 48.202), Point(140.697696296, 36.006, 48.202)])

edges = [top_edge, bottom_edge]

surf = ComplexFaultSurface.from_fault_data(edges, mesh_spacing=10.)

# get grid of points for which to calculate distances and associated map projection
mesh, m = get_grid_and_map_proj(surf, delta=0.05)
x, y = m(mesh.lons, mesh.lats)

In [16]:
# extract coordinates of rupture surface boundary
rup_mesh = surf.get_mesh()
boundary_lons = numpy.concatenate(
    (rup_mesh.lons[0, :], rup_mesh.lons[1:, -1], rup_mesh.lons[-1,:-1][::-1], rup_mesh.lons[:-1, 0][::-1])
)
boundary_lats = numpy.concatenate(
    (rup_mesh.lats[0, :], rup_mesh.lats[1:, -1], rup_mesh.lats[-1,:-1][::-1], rup_mesh.lats[:-1, 0][::-1])
)
boundary_x, boundary_y = m(boundary_lons, boundary_lats)

In [18]:
# compute and plot Rrup
r_rup = surf.get_min_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_rup, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 1.), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 1.), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rrup', fontsize=20)


Out[18]:
<matplotlib.text.Text at 0x5006f50>

In [19]:
# compute and plot Rjb
r_jb = surf.get_joyner_boore_distance(mesh)

fig = pyplot.figure(figsize=(9, 9))
m.plot(boundary_x, boundary_y, linewidth=3, color='white')
m.contourf(x, y, r_jb, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 1.), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 1.), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rjb', fontsize=20)


Out[19]:
<matplotlib.text.Text at 0x987b3d0>

Distances to Multi Surface


In [21]:
# define Multi Surface as list of planar surfaces
p1 = PlanarSurface(
    mesh_spacing=2., strike=3., dip=40.,
    top_left = Point(depth=2.0, latitude=36.539, longitude=137.874),
    top_right = Point(depth=2.0, latitude=36.7680117889, longitude=137.888982562),
    bottom_left = Point(depth=14.8557521937, latitude=36.5316665297, longitude=138.045238973),
    bottom_right = Point(depth=14.8557521937, latitude=36.7606772927, longitude=138.060731463)
)
p2 = PlanarSurface(
    mesh_spacing=2., strike=344., dip=40.,
    top_left = Point(depth=2.0, latitude=36.2320586295, longitude=137.983095101),
    top_right = Point(depth=2.0, latitude=36.539, longitude=137.874),
    bottom_left = Point(depth=14.8557521937, latitude=36.2699248045, longitude=138.147372206),
    bottom_right = Point(depth=14.8557521937, latitude=36.5768649083, longitude=138.038927779)
)
p3 = PlanarSurface(
    mesh_spacing=2., strike=337., dip=80.,
    top_left = Point(depth=2.0, latitude=36.0836674599, longitude=138.039395087),
    top_right = Point(depth=2.0, latitude=36.212, longitude=137.972),
    bottom_left = Point(depth=15.7873085422, latitude=36.0922075079, longitude=138.064300307),
    bottom_right = Point(depth=15.7873085422, latitude=36.2205400358, longitude=137.996946016)
)
p4 = PlanarSurface(
    mesh_spacing=2., strike=318., dip=80.,
    top_left = Point(depth=2.0, latitude=35.8588534701, longitude=138.287735144),
    top_right = Point(depth=2.0, latitude=36.083, longitude=138.039),
    bottom_left = Point(depth=15.7873085422, latitude=35.8734811262, longitude=138.307786048),
    bottom_right = Point(depth=15.7873085422, latitude=36.0976276423, longitude=138.059107946)
)
surf = MultiSurface([p1, p2, p3, p4])

# get grid of points for which to calculate distances and associated map projection
mesh, m = get_grid_and_map_proj(surf)
x, y = m(mesh.lons, mesh.lats)

In [22]:
# For each individual surface compute the boundary
boundaries_x = []
boundaries_y = []
for s in surf.surfaces:
    lons = numpy.array(
        [s.top_left.longitude, s.top_right.longitude, s.bottom_right.longitude, s.bottom_left.longitude, s.top_left.longitude]
    )
    lats = numpy.array(
        [s.top_left.latitude, s.top_right.latitude, s.bottom_right.latitude, s.bottom_left.latitude, s.top_left.latitude]
    )
    xx, yy = m(lons, lats)
    boundaries_x.append(xx)
    boundaries_y.append(yy)

In [24]:
# compute and plot Rrup
r_rup = surf.get_min_distance(mesh)

fig = pyplot.figure(figsize=(9,9))
for xx, yy in zip(boundaries_x, boundaries_y):
    m.plot(xx, yy, linewidth=3, color='white')
m.contourf(x, y, r_rup, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.2), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.2), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rrup', fontsize=20)


Out[24]:
<matplotlib.text.Text at 0x5cb5250>

In [ ]:
# compute and plot Rjb
r_jb = surf.get_joyner_boore_distance(mesh)

fig = pyplot.figure(figsize=(9,9))
for xx, yy in zip(boundaries_x, boundaries_y):
    m.plot(xx, yy, linewidth=3, color='white')
m.contourf(x, y, r_jb, 100)
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.2), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.2), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rjb', fontsize=20)

In [25]:
# compute and plot Rx
r_x = surf.get_rx_distance(mesh)

fig = pyplot.figure(figsize=(9,9))
for xx, yy in zip(boundaries_x, boundaries_y):
    m.plot(xx, yy, linewidth=3, color='black')
m.contourf(x, y, r_x, 100, cmap='RdBu')
# m.drawparallels(numpy.arange(numpy.min(mesh.lats), numpy.max(mesh.lats), 0.2), labels=[True, False, False, True])
# m.drawmeridians(numpy.arange(numpy.min(mesh.lons), numpy.max(mesh.lons), 0.2), labels=[True, False, False, True])
m.colorbar()
pyplot.title('Rx', fontsize=20)


Out[25]:
<matplotlib.text.Text at 0xb7dedd0>

In [ ]: