2017-06-08 18:17:03,113 INFO process all photos from train file
2017-06-08 18:17:03,120 INFO > [started] processing photo ../../input/kaggle-sea-lion/Train/42.jpg...
2017-06-08 18:17:03,682 INFO sea lions found: 18
2017-06-08 18:17:03,685 INFO sea lions added to dataset: 18
2017-06-08 18:17:03,686 INFO non sea lions added to dataset: 0
2017-06-08 18:17:03,696 INFO pyramid layer=0 image=(1500, 4992, 3) scale=1
2017-06-08 18:17:03,699 INFO > [started] sliding_window...
(1500, 4992, 3)
152/1500 [===>......................] 10% 44s remaining=392s sliding window
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-11-493a65ebfc21> in <module>()
43 detections, imgs = objectdetect.evaluate_regions(region_generator, eval_region, filter_score_min=0.97,
44 filter_labels=(0,1,2,3,4), apply_non_max_suppression=True,
---> 45 supression_overlap_threshold=0.08, threads=None)
46 #compare ground truth to found lions
47 false_positives = np.zeros(LABEL_DIMS[0]-1)
/notebooks/datascience-snippets/kaggle-sea-lion/modules/objectdetect.py in evaluate_regions(region_generator, evaluate_function, filter_score_min, filter_labels, apply_non_max_suppression, supression_overlap_threshold, threads, batch_size, apply_nms_each)
65 dets_imgs = []
66 for region in region_generator:
---> 67 ei = er.evaluate_region(region, evaluate_function, filter_score_min, filter_labels)
68 if(ei[0] is not None):
69 dets_imgs.append(ei)
/notebooks/datascience-snippets/kaggle-sea-lion/modules/objectdetect.py in evaluate_region(self, region, evaluate_function, filter_score_min, filter_labels)
116 #boundary patches are smaller than the first ones
117 if img.shape[0]==self.win_size[0] and img.shape[1]==self.win_size[1]:
--> 118 score,label = evaluate_function(img)
119 scale = region[3]
120 eval_detection = [region[0], region[1], round(img.shape[0]*(1/scale)), round(img.shape[1]*(1/scale)), score, label]
<ipython-input-11-493a65ebfc21> in eval_region(region_img)
3 """ Returns (score, label) """
4 def eval_region(region_img):
----> 5 y_pred = model.predict(np.array([region_img]))
6 ylp = utils.onehot_to_label(np.array(y_pred))
7 return y_pred[0][ylp[0]], ylp[0]
/usr/local/lib/python3.4/dist-packages/keras/models.py in predict(self, x, batch_size, verbose)
900 if self.model is None:
901 self.build()
--> 902 return self.model.predict(x, batch_size=batch_size, verbose=verbose)
903
904 def predict_on_batch(self, x):
/usr/local/lib/python3.4/dist-packages/keras/engine/training.py in predict(self, x, batch_size, verbose)
1583 f = self.predict_function
1584 return self._predict_loop(f, ins,
-> 1585 batch_size=batch_size, verbose=verbose)
1586
1587 def train_on_batch(self, x, y,
/usr/local/lib/python3.4/dist-packages/keras/engine/training.py in _predict_loop(self, f, ins, batch_size, verbose)
1210 ins_batch = _slice_arrays(ins, batch_ids)
1211
-> 1212 batch_outs = f(ins_batch)
1213 if not isinstance(batch_outs, list):
1214 batch_outs = [batch_outs]
/usr/local/lib/python3.4/dist-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2227 session = get_session()
2228 updated = session.run(self.outputs + [self.updates_op],
-> 2229 feed_dict=feed_dict)
2230 return updated[:len(self.outputs)]
2231
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
765 try:
766 result = self._run(None, fetches, feed_dict, options_ptr,
--> 767 run_metadata_ptr)
768 if run_metadata:
769 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
963 if final_fetches or final_targets:
964 results = self._do_run(handle, final_targets, final_fetches,
--> 965 feed_dict_string, options, run_metadata)
966 else:
967 results = []
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1013 if handle is None:
1014 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1015 target_list, options, run_metadata)
1016 else:
1017 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1020 def _do_call(self, fn, *args):
1021 try:
-> 1022 return fn(*args)
1023 except errors.OpError as e:
1024 message = compat.as_text(e.message)
/usr/local/lib/python3.4/dist-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1002 return tf_session.TF_Run(session, options,
1003 feed_dict, fetch_list, target_list,
-> 1004 status, run_metadata)
1005
1006 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: