2017-06-09 00:16:38,533 INFO Using 4 parallel tasks
2017-06-09 00:16:40,563 INFO > [started] PROCESSING SHARD 4...
2017-06-09 00:16:40,574 INFO Load CNN models [[(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)]]
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:69: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(64, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:71: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(128, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:73: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:78: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:80: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:82: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(6, kernel_initializer="glorot_uniform", activation="softmax")`
model.add(core.Dense(6, activation='softmax', init='glorot_uniform'))
2017-06-09 00:16:43,563 INFO > [started] PROCESSING SHARD 3...
2017-06-09 00:16:43,578 INFO Load CNN models [[(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)]]
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:69: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(64, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:71: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(128, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:73: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:78: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:80: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:82: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(6, kernel_initializer="glorot_uniform", activation="softmax")`
model.add(core.Dense(6, activation='softmax', init='glorot_uniform'))
2017-06-09 00:16:44,434 INFO found 2 items for shard 4
2017-06-09 00:16:44,437 INFO ignoring non jpg image. filename=MismatchedTrainImages.txt
2017-06-09 00:16:44,439 INFO ignoring non jpg image. filename=.ipynb_checkpoints
2017-06-09 00:16:44,441 INFO GENERATE SUBMISSION FILE
2017-06-09 00:16:44,449 INFO detection result exported to ../../output/kaggle-sea-lion/22/4/submission.csv
2017-06-09 00:16:44,455 INFO > [done] PROCESSING SHARD 4 (3892.419 ms)
2017-06-09 00:16:45,567 INFO > [started] PROCESSING SHARD 2...
2017-06-09 00:16:45,578 INFO Load CNN models [[(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)]]
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:69: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(64, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:71: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(128, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:73: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:78: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:80: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:82: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(6, kernel_initializer="glorot_uniform", activation="softmax")`
model.add(core.Dense(6, activation='softmax', init='glorot_uniform'))
2017-06-09 00:16:46,566 INFO > [started] PROCESSING SHARD 1...
2017-06-09 00:16:46,583 INFO Load CNN models [[(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)], [(84, 84, 3), '../../input/kaggle-sea-lion/05/weights-medium1-class0-84x84.h5', (21, 21)]]
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:69: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(64, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(64, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:71: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(128, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(128, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:73: UserWarning: Update your `Conv2D` call to the Keras 2 API: `Conv2D(256, (3, 3), kernel_initializer="glorot_uniform", padding="same", activation="relu")`
model.add(convolutional.Conv2D(256, (3, 3), activation='relu', padding='same', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:78: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:80: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1024, kernel_initializer="glorot_uniform", activation="relu")`
model.add(core.Dense(1024, activation='relu', init='glorot_uniform'))
/notebooks/datascience-snippets/kaggle-sea-lion/modules/lions.py:82: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(6, kernel_initializer="glorot_uniform", activation="softmax")`
model.add(core.Dense(6, activation='softmax', init='glorot_uniform'))
2017-06-09 00:16:48,350 INFO found 3 items for shard 3
2017-06-09 00:16:48,355 INFO ignoring non jpg image. filename=train.csv
2017-06-09 00:16:48,358 INFO GENERATE SUBMISSION FILE
2017-06-09 00:16:48,368 INFO detection result exported to ../../output/kaggle-sea-lion/22/3/submission.csv
2017-06-09 00:16:48,377 INFO > [done] PROCESSING SHARD 3 (4813.430 ms)
2017-06-09 00:16:50,568 INFO found 5 items for shard 2
2017-06-09 00:16:50,570 INFO > [started] processing photo ../../input/kaggle-sea-lion/Train/42.jpg...
2017-06-09 00:16:50,917 INFO SEARCHING CLASS 0...
2017-06-09 00:16:50,923 INFO pyramid layer=0 image=(100, 4992, 3) scale=1
2017-06-09 00:16:50,926 INFO > [started] sliding_window...
0/100 [>.........................] 0% 0s sliding window
2017-06-09 00:16:51,454 INFO found 3 items for shard 1
2017-06-09 00:16:51,455 INFO GENERATE SUBMISSION FILE
2017-06-09 00:16:51,464 INFO detection result exported to ../../output/kaggle-sea-lion/22/1/submission.csv
2017-06-09 00:16:51,469 INFO > [done] PROCESSING SHARD 1 (4903.450 ms)
84/100 [=====================>....] 84% 4s remaining=0s sliding windoww
2017-06-09 00:16:55,738 INFO > [done] sliding_window (4812.018 ms)
2017-06-09 00:16:55,742 INFO > [started] non_max_suppression. boxes=12982...
2017-06-09 00:16:55,808 INFO > [done] non_max_suppression. boxes=12982 (65.668 ms)
2017-06-09 00:16:57,004 INFO SEARCHING CLASS 1...
2017-06-09 00:16:57,008 INFO pyramid layer=0 image=(100, 4992, 3) scale=1
2017-06-09 00:16:57,010 INFO > [started] sliding_window...
84/100 [=====================>....] 84% 5s remaining=1s sliding windoww
2017-06-09 00:17:02,329 INFO > [done] sliding_window (5318.720 ms)
2017-06-09 00:17:02,331 INFO > [started] non_max_suppression. boxes=12982...
2017-06-09 00:17:02,448 INFO > [done] non_max_suppression. boxes=12982 (116.534 ms)
/usr/local/lib/python3.4/dist-packages/ipykernel/__main__.py:77: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
2017-06-09 00:17:03,644 INFO SEARCHING CLASS 2...
2017-06-09 00:17:03,647 INFO pyramid layer=0 image=(100, 4992, 3) scale=1
2017-06-09 00:17:03,650 INFO > [started] sliding_window...
84/100 [=====================>....] 84% 5s remaining=0s sliding windoww
2017-06-09 00:17:08,881 INFO > [done] sliding_window (5231.443 ms)
2017-06-09 00:17:08,884 INFO > [started] non_max_suppression. boxes=12982...
2017-06-09 00:17:08,947 INFO > [done] non_max_suppression. boxes=12982 (62.583 ms)
2017-06-09 00:17:10,151 INFO SEARCHING CLASS 3...
2017-06-09 00:17:10,155 INFO pyramid layer=0 image=(100, 4992, 3) scale=1
2017-06-09 00:17:10,157 INFO > [started] sliding_window...
84/100 [=====================>....] 84% 4s remaining=0s sliding windoww
2017-06-09 00:17:14,772 INFO > [done] sliding_window (4614.666 ms)
2017-06-09 00:17:14,774 INFO > [started] non_max_suppression. boxes=12982...
2017-06-09 00:17:14,837 INFO > [done] non_max_suppression. boxes=12982 (63.436 ms)
2017-06-09 00:17:16,052 INFO SEARCHING CLASS 4...
2017-06-09 00:17:16,057 INFO pyramid layer=0 image=(100, 4992, 3) scale=1
2017-06-09 00:17:16,060 INFO > [started] sliding_window...
84/100 [=====================>....] 84% 4s remaining=0s sliding windoww
2017-06-09 00:17:20,988 INFO > [done] sliding_window (4928.020 ms)
2017-06-09 00:17:20,990 INFO > [started] non_max_suppression. boxes=12982...
2017-06-09 00:17:21,058 INFO > [done] non_max_suppression. boxes=12982 (68.058 ms)
2017-06-09 00:17:22,251 INFO performing nms
2017-06-09 00:17:23,485 INFO image 42
2017-06-09 00:17:23,487 INFO total detections: 3
2017-06-09 00:17:23,490 INFO class detections: [3, 0, 0, 0, 0]
total_lions_count
[[42, 3, 0, 0, 0, 0]]
2017-06-09 00:17:23,495 INFO > [done] processing photo ../../input/kaggle-sea-lion/Train/42.jpg (32925.123 ms)
2017-06-09 00:17:23,498 INFO GENERATE SUBMISSION FILE
2017-06-09 00:17:23,506 INFO detection result exported to ../../output/kaggle-sea-lion/22/2/submission.csv
2017-06-09 00:17:23,510 INFO > [done] processing photo ../../input/kaggle-sea-lion/Train/42.jpg (32940.347 ms)
2017-06-09 00:17:23,798 INFO ==== ALL DONE ====