In [1]:
import sys
sys.path.append('..')

In [2]:
from src.carregamento.dados import todas_escolas_pd


/Users/fmmartin/.pyenv/versions/3.4.4/envs/dados_env/lib/python3.4/site-packages/pandas/core/indexing.py:465: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item] = s

In [3]:
import pandas as pd

In [6]:
medias = ['MEDIA_5EF_LP', 'MEDIA_5EF_MT', 'MEDIA_9EF_LP', 'MEDIA_9EF_MT']
todas_escolas_pd[todas_escolas_pd['ID_ESCOLA'] == 26121786][medias]


Out[6]:
MEDIA_5EF_LP MEDIA_5EF_MT MEDIA_9EF_LP MEDIA_9EF_MT
17802 165.17 179.46 210.9 220.18

In [10]:
todas_escolas_pd.groupby('NIVEL_SOCIO_ECONOMICO')[medias].describe()


/Users/fmmartin/.pyenv/versions/3.4.4/envs/dados_env/lib/python3.4/site-packages/numpy/lib/function_base.py:3834: RuntimeWarning: Invalid value encountered in percentile
  RuntimeWarning)
Out[10]:
MEDIA_5EF_LP MEDIA_5EF_MT MEDIA_9EF_LP MEDIA_9EF_MT
NIVEL_SOCIO_ECONOMICO
Grupo 1 count 1377.000000 1377.000000 2009.000000 2009.000000
mean 153.572353 163.518010 214.262907 218.958006
std 21.301175 26.573684 13.840801 14.419636
min 104.180000 99.890000 155.180000 158.380000
25% NaN NaN 207.850000 212.770000
50% NaN NaN 217.670000 221.825000
75% NaN NaN 217.670000 221.825000
max 295.550000 302.880000 297.840000 362.810000
Grupo 2 count 4086.000000 4086.000000 5809.000000 5809.000000
mean 164.013199 176.383715 219.590728 224.182196
std 22.585799 27.231967 13.625636 14.781723
min 107.990000 104.160000 162.150000 165.150000
25% NaN NaN 217.670000 221.825000
50% NaN NaN 217.670000 221.825000
75% NaN NaN 222.330000 226.550000
max 288.840000 318.200000 303.140000 389.750000
Grupo 3 count 8501.000000 8501.000000 11797.000000 11797.000000
mean 173.029606 186.758512 233.624326 237.583730
std 19.944722 23.487421 13.944117 14.627241
min 115.720000 114.150000 158.840000 166.800000
25% NaN NaN 226.590000 229.360000
50% NaN NaN 239.210000 243.000000
75% NaN NaN 239.210000 243.000000
max 274.980000 315.340000 302.360000 335.950000
Grupo 4 count 11859.000000 11859.000000 17131.000000 17131.000000
mean 190.802356 207.084591 238.825501 243.176357
std 19.434745 22.674312 12.949732 13.895179
min 109.230000 108.720000 167.710000 179.310000
25% NaN NaN 235.960000 239.180000
50% NaN NaN 239.210000 243.000000
75% NaN NaN 241.160000 244.820000
max 275.430000 306.700000 305.030000 318.660000
Grupo 5 count 10941.000000 10941.000000 15607.000000 15607.000000
mean 206.152986 223.283476 243.778632 248.344079
std 17.669872 19.963588 13.402277 14.223368
min 130.960000 111.220000 169.210000 178.110000
25% NaN NaN 239.210000 243.000000
50% NaN NaN 239.210000 243.000000
75% NaN NaN 250.000000 254.645000
max 272.110000 303.470000 321.870000 334.290000
Grupo 6 count 1194.000000 1194.000000 1471.000000 1471.000000
mean 227.063107 244.404966 264.992869 271.089963
std 15.557346 17.431775 12.515898 14.194340
min 169.500000 180.460000 190.450000 200.850000
25% NaN NaN 262.685000 268.320000
50% NaN NaN 265.370000 270.285000
75% NaN NaN 267.740000 273.220000
max 280.910000 307.160000 331.790000 358.110000
Grupo 7 count 4.000000 4.000000 4.000000 4.000000
mean 241.320000 265.507500 282.320000 299.060000
std 5.401870 7.790397 20.224451 34.649122
min 236.090000 259.630000 265.370000 270.285000
25% 238.047500 260.087500 265.370000 270.285000
50% 240.295000 262.975000 279.200000 293.042500
75% 243.567500 268.395000 296.150000 321.817500
max 248.600000 276.450000 305.510000 339.870000