In my previous blog post, we looked at the similarity within and across modules by only looking at the change data of each source code file.
In this analysis, we use same data analysis approach, but visualize the result in a 3D scatter plot.
In [103]:
import pandas as pd
from sklearn.metrics.pairwise import cosine_distances
from sklearn.manifold import MDS
import numpy as np
from matplotlib import cm
from matplotlib.colors import rgb2hex
import ipyvolume as ipv
# read, filter and prepare data
git_log = pd.read_csv("https://git.io/Jez2h")
prod_code = git_log.copy()
prod_code = prod_code[prod_code.file.str.endswith(".java")]
prod_code = prod_code[prod_code.file.str.startswith("backend/src/main")]
prod_code = prod_code[~prod_code.file.str.endswith("package-info.java")]
prod_code['hit'] = 1
# pivot table to get a change vector per file
commit_matrix = prod_code.reset_index().pivot_table(
index='file',
columns='sha',
values='hit',
fill_value=0)
commit_matrix.iloc[0:5,50:55]
# calculate distance between files based on changes
dissimilarity_matrix = cosine_distances(commit_matrix)
# break down matrix to 3D representation
model = MDS(dissimilarity='precomputed', random_state=0, n_components=3)
dissimilarity_3d = model.fit_transform(dissimilarity_matrix)
# extract module names
dissimilarity_3d_df = pd.DataFrame(
dissimilarity_3d,
index=commit_matrix.index,
columns=["x", "y", "z"])
dissimilarity_3d_df['module'] = dissimilarity_3d_df.index.str.split("/").str[6]
dissimilarity_3d_df.head()
Out[103]:
In [104]:
modules = dissimilarity_3d_df[['module']].drop_duplicates()
rgb_colors = [x for x in cm.Spectral(np.linspace(0,1,len(modules)))]
modules['color'] = rgb_colors
modules = modules.set_index("module", drop=True)
dissimilarity_3d_df['color'] = dissimilarity_3d_df['module'].map(modules['color'].to_dict())
dissimilarity_3d_df.head()
Out[104]:
And then, we visualize this data with ipyvolume.
In [106]:
x = dissimilarity_3d_df['x']
y = dissimilarity_3d_df['y']
z = dissimilarity_3d_df['z']
color = dissimilarity_3d_df['color'].values.tolist()
ipv.quickscatter(x, y, z, color=color, size=7, marker="sphere")
That's it! A nice 3D representation of our little software program.
We see some spheres with the same color near to each other. These modules the were change together in the first place. But there are also some mixed up areas. The reasons for this are explained here.