In [ ]:
In [120]:
x,y=symbols('x,y')
f=Function('f')(x,y)
eta1=Function('eta_1')(x)
eta2=Function('eta_2')(y)
xi=0
eta=eta1*eta2
Q=eta-eta*f
condSim=Q.diff(x)+f*Q.diff(y)-f.diff(y)*Q
condSim.simplify()
Out[120]:
In [123]:
Q=(x+y)
EcuaQ=simplify(Q.diff(x)+f*Q.diff(y)-f.diff(y)*Q)
In [124]:
h=Function('h')(y)
sol=dsolve( EcuaQ.subs(f,h),h).rhs
sol
Out[124]:
In [125]:
C1=symbols('C1')
f=sol.subs(C1,x)
f.simplify()
Out[125]:
In [129]:
xi=-1/x
eta=simplify(Q+f*xi)
xi,eta
Out[129]:
In [167]:
f=x**2+x*y-1
a,b,c=symbols('a,b,c')
Q=(a*x+b*y+c)
condSim=Q.diff(x)+f*Q.diff(y)-f.diff(y)*Q
condSim=condSim.factor()
condSim,nada=fraction(condSim)
condSim
Out[167]:
In [156]:
L =[-a*c-a*d+b*c, -2*a*d,a*d-b*c-h*k,a*d]
Out[156]:
In [166]:
condSim.subs(d,0)
L=[condSim.subs(d,0).coeff(x**i) for i in [1,2,3]]
L
Out[166]:
In [146]:
eq4=condSim.subs({x:-1,y:1})
eq4
Out[146]:
In [147]:
solve([eq1,eq2,eq3,eq4],[a,b,c,d])
Out[147]: