In [24]:
from sympy import *
init_printing()
var('t,mu,omega,omega0,F0,A,B')
x=A*cos(omega0*t)+B*sin(omega0*t)
eq=x.diff(t,2)+2*mu*x.diff(t)+omega**2*x-F0*cos(omega0*t)
eqL1=eq.factor().coeff(sin(omega0*t))
eqL2=eq.factor().coeff(cos(omega0*t))
Incog=[A,B]
Ecuas=[eqL1,eqL2]
M=Matrix([[ecu.coeff(inco) for inco in Incog] for ecu in Ecuas])
print(latex(M.det()))
In [26]:
print(latex(solve(M.det(),omega)))
In [29]:
SolAB=solve([eqL1,eqL2],[A,B])
x.subs(SolAB)
Out[29]:
In [32]:
rho=sqrt(A**2+B**2).subs(SolAB).simplify()
rho
Out[32]:
In [36]:
plot(rho.subs({F0:1, mu:.1,omega:5}),(omega0,0,10) )
Out[36]:
In [57]:
sol=solve(rho.diff(omega0),omega0)
sol
Out[57]:
In [61]:
rho.diff(omega0,2).subs(omega0,sol[2])
Out[61]:
In [63]:
ho.subs(omega0,sol[2]).simplify()
Out[63]:
In [64]:
rho.subs(omega0,0).simplify()
Out[64]:
In [67]:
limit(rho,omega0,oo)
Out[67]:
In [69]:
sol[2].subs({mu:.1,omega:5})
Out[69]:
In [ ]: