In [1]:
from sympy import *

In [2]:
init_printing()

In [3]:
x,k,c1,c2=symbols('x,k,c_1,c_2')
y=Function('y')(x)
x,k,c1,c2,y


Out[3]:
$$\left ( x, \quad k, \quad c_{1}, \quad c_{2}, \quad y{\left (x \right )}\right )$$

Ejercicio 1

Ejer 6a


In [4]:
ecu6a=Eq(y,c1*x+c2*x**2)
ecu6a
z=ecu6a.rhs
z
ec1=Eq(y.diff(x),z.diff(x))
ec2=Eq(y.diff(x,2),z.diff(x,2))
subs1=solve([ec1,ec2],[c1,c2])
(ecu6a.subs(subs1)).simplify()


Out[4]:
$$y{\left (x \right )} = \frac{x}{2} \left(- x \frac{d^{2}}{d x^{2}} y{\left (x \right )} + 2 \frac{d}{d x} y{\left (x \right )}\right)$$

Ejer 6b


In [5]:
ecu6b=Eq(y,c1*exp(k*x)+c2*exp(-k*x))
ecu6b


Out[5]:
$$y{\left (x \right )} = c_{1} e^{k x} + c_{2} e^{- k x}$$

In [6]:
z=c1*exp(k*x)+c2*exp(-k*x)
z


Out[6]:
$$c_{1} e^{k x} + c_{2} e^{- k x}$$

In [7]:
z.diff(x)


Out[7]:
$$c_{1} k e^{k x} - c_{2} k e^{- k x}$$

In [8]:
ec1=Eq(y.diff(x),z.diff(x))
ec2=Eq(y.diff(x,2),z.diff(x,2))
ec1, ec2


Out[8]:
$$\left ( \frac{d}{d x} y{\left (x \right )} = c_{1} k e^{k x} - c_{2} k e^{- k x}, \quad \frac{d^{2}}{d x^{2}} y{\left (x \right )} = k^{2} \left(c_{1} e^{k x} + c_{2} e^{- k x}\right)\right )$$

In [9]:
subs1=solve([ec1,ec2],[c1,c2])
subs1


Out[9]:
$$\left \{ c_{1} : \frac{e^{- k x}}{2 k^{2}} \left(k \frac{d}{d x} y{\left (x \right )} + \frac{d^{2}}{d x^{2}} y{\left (x \right )}\right), \quad c_{2} : \frac{e^{k x}}{2 k^{2}} \left(- k \frac{d}{d x} y{\left (x \right )} + \frac{d^{2}}{d x^{2}} y{\left (x \right )}\right)\right \}$$

In [10]:
(ecu6b.subs(subs1)).simplify()


Out[10]:
$$y{\left (x \right )} = \frac{1}{k^{2}} \frac{d^{2}}{d x^{2}} y{\left (x \right )}$$

Ejer 6c


In [11]:
ecu6c=Eq(y,c1*sin(k*x)+c2*cos(-k*x))
ecu6c


Out[11]:
$$y{\left (x \right )} = c_{1} \sin{\left (k x \right )} + c_{2} \cos{\left (k x \right )}$$

In [12]:
z=ecu6c.rhs
z


Out[12]:
$$c_{1} \sin{\left (k x \right )} + c_{2} \cos{\left (k x \right )}$$

In [13]:
ec1=Eq(y.diff(x),z.diff(x))
ec2=Eq(y.diff(x,2),z.diff(x,2))
ec1, ec2


Out[13]:
$$\left ( \frac{d}{d x} y{\left (x \right )} = c_{1} k \cos{\left (k x \right )} - c_{2} k \sin{\left (k x \right )}, \quad \frac{d^{2}}{d x^{2}} y{\left (x \right )} = - k^{2} \left(c_{1} \sin{\left (k x \right )} + c_{2} \cos{\left (k x \right )}\right)\right )$$

In [14]:
subs1=solve([ec1,ec2],[c1,c2])
subs1


Out[14]:
$$\left \{ c_{1} : \frac{1}{k^{2}} \left(k \cos{\left (k x \right )} \frac{d}{d x} y{\left (x \right )} - \sin{\left (k x \right )} \frac{d^{2}}{d x^{2}} y{\left (x \right )}\right), \quad c_{2} : - \frac{1}{k^{2}} \left(k \sin{\left (k x \right )} \frac{d}{d x} y{\left (x \right )} + \cos{\left (k x \right )} \frac{d^{2}}{d x^{2}} y{\left (x \right )}\right)\right \}$$

In [15]:
(ecu6c.subs(subs1)).simplify()


Out[15]:
$$y{\left (x \right )} = - \frac{1}{k^{2}} \frac{d^{2}}{d x^{2}} y{\left (x \right )}$$

Ejercicio 2

Ejer. 2


In [16]:
z1=x
z2=x**2
((z1.diff(x,2)-(2/x)*z1.diff(x)+(2/(x**2))*z1)).simplify(), ((z2.diff(x,2)-(2/x)*z2.diff(x)+(2/(x**2))*z2)).simplify()


Out[16]:
$$\left ( 0, \quad 0\right )$$

In [17]:
solve([Eq(3,c1+c2), Eq(5,c1+2*c2)],[c1, c2])


Out[17]:
$$\left \{ c_{1} : 1, \quad c_{2} : 2\right \}$$

Ejercicio 3

Ejer. 5


In [18]:
v=Function('v')(x)
y2=v*x
y2, (1-x**2)*y.diff(x,2)-2*x*y.diff(x)+2*y


Out[18]:
$$\left ( x v{\left (x \right )}, \quad - 2 x \frac{d}{d x} y{\left (x \right )} + \left(- x^{2} + 1\right) \frac{d^{2}}{d x^{2}} y{\left (x \right )} + 2 y{\left (x \right )}\right )$$

In [19]:
ecv=((1-x**2)*y2.diff(x,2)-2*x*y2.diff(x)+2*y2).simplify()
ecv


Out[19]:
$$- x^{3} \frac{d^{2}}{d x^{2}} v{\left (x \right )} - 4 x^{2} \frac{d}{d x} v{\left (x \right )} + x \frac{d^{2}}{d x^{2}} v{\left (x \right )} + 2 \frac{d}{d x} v{\left (x \right )}$$

In [20]:
u=Function('u')(x)
ecu=Eq(u.diff(x)+2*(1/x-x/(1-x**2))*u)
ecu


Out[20]:
$$\left(- \frac{2 x}{- x^{2} + 1} + \frac{2}{x}\right) u{\left (x \right )} + \frac{d}{d x} u{\left (x \right )} = 0$$

In [21]:
dsolve(ecu,u)


Out[21]:
$$u{\left (x \right )} = \frac{C_{1}}{x^{2} \left(x^{2} - 1\right)}$$

In [22]:
V=integrate(dsolve(ecu,u).rhs,x)
V


Out[22]:
$$C_{1} \left(\frac{1}{2} \log{\left (x - 1 \right )} - \frac{1}{2} \log{\left (x + 1 \right )} + \frac{1}{x}\right)$$

In [23]:
#Luego y_3=V*x resuelve (1-x^2)y''-2xy'+2y=0
y3=V*x
y3.simplify(), ((1-x**2)*y3.diff(x,2)-2*x*y3.diff(x)+2*y3).simplify()


Out[23]:
$$\left ( \frac{C_{1}}{2} \left(x \left(\log{\left (x - 1 \right )} - \log{\left (x + 1 \right )}\right) + 2\right), \quad 0\right )$$

Ejer. 6


In [53]:
#verifiquemos que 1/\sqrt(x) es solucion de x^2y''+xy'+(x^2-1/4)y=0
x=symbols('x')
y1=(x)**(-Rational(1,2))*sin(x)
yy=(x**2*(y1.diff(x,2))+x*y1.diff(x)+(x**2-Rational(1,4))*y1).simplify()
y1, yy


Out[53]:
$$\left ( \frac{1}{\sqrt{x}} \sin{\left (x \right )}, \quad 0\right )$$

In [56]:
v=Function('v')(x)
y2=v*y1
ecc=(x**2*(y2.diff(x,2))+x*y2.diff(x)+(x**2-Rational(1,4))*y2).simplify()
y2, ecc


Out[56]:
$$\left ( \frac{1}{\sqrt{x}} v{\left (x \right )} \sin{\left (x \right )}, \quad x^{\frac{3}{2}} \left(\sin{\left (x \right )} \frac{d^{2}}{d x^{2}} v{\left (x \right )} + 2 \cos{\left (x \right )} \frac{d}{d x} v{\left (x \right )}\right)\right )$$

In [58]:
u=Function('u')(x)
ecu=Eq(sin(x)*u.diff(x)+2*cos(x)*u)
ecu


Out[58]:
$$2 u{\left (x \right )} \cos{\left (x \right )} + \sin{\left (x \right )} \frac{d}{d x} u{\left (x \right )} = 0$$

In [62]:
sol=dsolve(ecu,u)
sol


Out[62]:
$$u{\left (x \right )} = \frac{C_{1}}{\sin^{2}{\left (x \right )}}$$

In [64]:
integrate(sol.rhs,x)


Out[64]:
$$- \frac{C_{1} \cos{\left (x \right )}}{\sin{\left (x \right )}}$$

In [ ]:


In [ ]:


In [ ]:

Ejer. 8


In [45]:
f=Function('f')(x)
v=Function('v')(x)
y2=v*x
y2


Out[45]:
$$\left(C_{1} \cos{\left (\sqrt{C} t \right )} + C_{2} \sin{\left (\sqrt{C} t \right )} + L - \frac{g}{C}\right) v{\left (C_{1} \cos{\left (\sqrt{C} t \right )} + C_{2} \sin{\left (\sqrt{C} t \right )} + L - \frac{g}{C} \right )}$$

In [26]:
(y2.diff(x,2)-x*f*y2.diff(x)+f*y2).simplify()


Out[26]:
$$- x^{2} f{\left (x \right )} \frac{d}{d x} v{\left (x \right )} + x \frac{d^{2}}{d x^{2}} v{\left (x \right )} + 2 \frac{d}{d x} v{\left (x \right )}$$

In [27]:
u=Function('u')(x)

Ejercicio 4

Ejer. 2f)


In [28]:
c1,c2=symbols('c_1,c_2')
solve([Eq(2,c1*exp(1)+c2*exp(-9)),Eq(0,c1*exp(1)-9*c2*exp(-9))],[c1,c2])


Out[28]:
$$\left \{ c_{1} : \frac{9}{5 e}, \quad c_{2} : \frac{e^{9}}{5}\right \}$$

Ejer. 5 a)


In [29]:
c1,c2=symbols('c_1,c_2')
z=1/x*(c1*cos(3*log(x))+c2*sin(3*log(x)))
z


Out[29]:
$$\frac{1}{x} \left(c_{1} \cos{\left (3 \log{\left (x \right )} \right )} + c_{2} \sin{\left (3 \log{\left (x \right )} \right )}\right)$$

In [30]:
(x**2*z.diff(x,2)+3*x*z.diff(x)+10*z).simplify()


Out[30]:
$$0$$

Ejer. 5 b)


In [31]:
c1,c2=symbols('c_1,c_2')
z=1/(x**2)*(c1*log(x)+c2)
z


Out[31]:
$$\frac{1}{x^{2}} \left(c_{1} \log{\left (x \right )} + c_{2}\right)$$

In [32]:
(2*x**2*z.diff(x,2)+10*x*z.diff(x)+8*z).simplify()


Out[32]:
$$0$$

Ejercicio 5


In [33]:
b,k=symbols('b,k')
z=1/(k**2-b**2)*sin(b*x)
z


Out[33]:
$$\frac{\sin{\left (b x \right )}}{- b^{2} + k^{2}}$$

In [34]:
((z.diff(x,2)+k**2*z)-sin(b*x)).simplify()


Out[34]:
$$0$$

In [35]:
integrate(x*exp(-x),x), integrate(x**2*exp(-x),x)


Out[35]:
$$\left ( \left(- x - 1\right) e^{- x}, \quad \left(- x^{2} - 2 x - 2\right) e^{- x}\right )$$

Ejercicio 6

Ejer. 3a)


In [36]:
C1=-integrate(Rational(1,2)*tan(2*x)*sin(2*x),x).simplify()
C2=integrate(Rational(1,2)*tan(2*x)*cos(2*x),x).simplify()
C1, C2


Out[36]:
$$\left ( \frac{1}{8} \log{\left (\sin{\left (2 x \right )} - 1 \right )} - \frac{1}{8} \log{\left (\sin{\left (2 x \right )} + 1 \right )} + \frac{1}{4} \sin{\left (2 x \right )}, \quad - \frac{1}{4} \cos{\left (2 x \right )}\right )$$

In [37]:
Y=(C1*cos(2*x)+C2*sin(2*x)).simplify()
Y


Out[37]:
$$\frac{1}{8} \left(\log{\left (\sin{\left (2 x \right )} - 1 \right )} - \log{\left (\sin{\left (2 x \right )} + 1 \right )}\right) \cos{\left (2 x \right )}$$

In [38]:
(Y.diff(x,2)+4*Y).simplify()


Out[38]:
$$\tan{\left (2 x \right )}$$

Ejercicio 7

Ejer. 3


In [39]:
m,g,L,r,rhoa,C=symbols('m,g,L,r,rho_a,C',positive=true)
C1,C2,t=symbols('C_1,C_2,t')
x=Function('x')(t)

In [40]:
x=C1*cos(sqrt(C)*t)+C2*sin(sqrt(C)*t)-g/C+L
x


Out[40]:
$$C_{1} \cos{\left (\sqrt{C} t \right )} + C_{2} \sin{\left (\sqrt{C} t \right )} + L - \frac{g}{C}$$

In [41]:
ec1=Eq(x.subs(t,0),0)
ec2=Eq(x.diff(t).subs(t,0),0)
ec1, ec2


Out[41]:
$$\left ( C_{1} + L - \frac{g}{C} = 0, \quad \sqrt{C} C_{2} = 0\right )$$