Out[77]:
$$\left \{ x{\left (t \right )} : \frac{1}{3 t + 1} \left(- \left(t^{2} - 1\right) \frac{d}{d t} x{\left (t \right )} - \frac{d^{2}}{d t^{2}} x{\left (t \right )} + \frac{d^{3}}{d t^{3}} x{\left (t \right )}\right), \quad y{\left (t \right )} : \frac{1}{3 t + 1} \left(t^{4} \frac{d}{d t} x{\left (t \right )} - t^{2} \frac{d}{d t} x{\left (t \right )} + t^{2} \frac{d^{2}}{d t^{2}} x{\left (t \right )} - t^{2} \frac{d^{3}}{d t^{3}} x{\left (t \right )} - 3 t \frac{d}{d t} x{\left (t \right )} + 3 t \frac{d^{2}}{d t^{2}} x{\left (t \right )} - \frac{d}{d t} x{\left (t \right )} + \frac{d^{2}}{d t^{2}} x{\left (t \right )}\right), \quad z{\left (t \right )} : \frac{1}{3 t + 1} \left(t \left(t + 3\right) \frac{d}{d t} x{\left (t \right )} + \frac{d^{2}}{d t^{2}} x{\left (t \right )} - \frac{d^{3}}{d t^{3}} x{\left (t \right )}\right)\right \}$$