Here we investigate the effect of adding more poles to a second order system.
Consider the following three systems: $$ \begin{align} T_1(s) &= \frac{25.542}{s^2 + 4s + 25.542} \\ T_2(s) &= \frac{245.42}{(s+10)(s^2 + 4s + 24.542)} \\ T_3(s) &= \frac{73.626}{(s+3)(s^2 + 4s+24.542)} \end{align} $$
We'll simulate each in response to a step input and investigate the effect of the additional pole
In [7]:
%matplotlib notebook
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt
In [2]:
# compute the pole locations
second_order_poles = np.roots([1, 4, 25.542])
second_order_poles
Out[2]:
In [14]:
# find the step responses
t1, c1 = signal.step(([], second_order_poles, 24.542))
t2, c2 = signal.step(([], np.append(second_order_poles, -15), 24.542*15))
t3, c3 = signal.step(([], np.append(second_order_poles, -3), 73.626))
In [15]:
# plot the responses
fig, ax = plt.subplots()
ax.plot(t1, c1, label='Second Order')
ax.plot(t2, c2, label='s=-10 pole')
ax.plot(t3, c3, label='s=-1 pole')
ax.grid()
ax.legend()
plt.show()