In [1]:
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)


Using TensorFlow backend.

In [2]:
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]

In [3]:
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu'))
model.add(Dense(8, init='uniform', activation='relu'))
model.add(Dense(1, init='uniform', activation='sigmoid'))


/opt/conda/lib/python3.5/site-packages/ipykernel/__main__.py:3: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(12, input_dim=8, activation="relu", kernel_initializer="uniform")`
  app.launch_new_instance()
/opt/conda/lib/python3.5/site-packages/ipykernel/__main__.py:4: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(8, activation="relu", kernel_initializer="uniform")`
/opt/conda/lib/python3.5/site-packages/ipykernel/__main__.py:5: UserWarning: Update your `Dense` call to the Keras 2 API: `Dense(1, activation="sigmoid", kernel_initializer="uniform")`

In [4]:
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

In [6]:
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)


Epoch 1/150
310/768 [===========>..................] - ETA: 0s - loss: 0.4703 - acc: 0.7516
/opt/conda/lib/python3.5/site-packages/keras/models.py:834: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
  warnings.warn('The `nb_epoch` argument in `fit` '
768/768 [==============================] - 0s - loss: 0.4604 - acc: 0.7799     
Epoch 2/150
768/768 [==============================] - 0s - loss: 0.4514 - acc: 0.7813     
Epoch 3/150
768/768 [==============================] - 0s - loss: 0.4551 - acc: 0.7839     
Epoch 4/150
768/768 [==============================] - 0s - loss: 0.4581 - acc: 0.7813     
Epoch 5/150
768/768 [==============================] - 0s - loss: 0.4528 - acc: 0.7839     
Epoch 6/150
768/768 [==============================] - 0s - loss: 0.4599 - acc: 0.7773     
Epoch 7/150
768/768 [==============================] - 0s - loss: 0.4516 - acc: 0.7878     
Epoch 8/150
768/768 [==============================] - 0s - loss: 0.4522 - acc: 0.7813     
Epoch 9/150
768/768 [==============================] - 0s - loss: 0.4448 - acc: 0.7813     
Epoch 10/150
768/768 [==============================] - 0s - loss: 0.4538 - acc: 0.7865     
Epoch 11/150
768/768 [==============================] - 0s - loss: 0.4516 - acc: 0.7904     
Epoch 12/150
768/768 [==============================] - 0s - loss: 0.4487 - acc: 0.7799     
Epoch 13/150
768/768 [==============================] - 0s - loss: 0.4688 - acc: 0.7708     
Epoch 14/150
768/768 [==============================] - 0s - loss: 0.4513 - acc: 0.7839     
Epoch 15/150
768/768 [==============================] - 0s - loss: 0.4518 - acc: 0.7930     
Epoch 16/150
768/768 [==============================] - 0s - loss: 0.4526 - acc: 0.7904     
Epoch 17/150
768/768 [==============================] - 0s - loss: 0.4478 - acc: 0.7826     
Epoch 18/150
768/768 [==============================] - 0s - loss: 0.4483 - acc: 0.7943     
Epoch 19/150
768/768 [==============================] - 0s - loss: 0.4527 - acc: 0.7943     
Epoch 20/150
768/768 [==============================] - 0s - loss: 0.4492 - acc: 0.7891     
Epoch 21/150
768/768 [==============================] - 0s - loss: 0.4501 - acc: 0.7786     
Epoch 22/150
768/768 [==============================] - 0s - loss: 0.4438 - acc: 0.7865     
Epoch 23/150
768/768 [==============================] - 0s - loss: 0.4723 - acc: 0.7708     
Epoch 24/150
768/768 [==============================] - 0s - loss: 0.4538 - acc: 0.7813     
Epoch 25/150
768/768 [==============================] - 0s - loss: 0.4469 - acc: 0.8008     
Epoch 26/150
768/768 [==============================] - 0s - loss: 0.4554 - acc: 0.7891     
Epoch 27/150
768/768 [==============================] - 0s - loss: 0.4493 - acc: 0.7773     
Epoch 28/150
768/768 [==============================] - 0s - loss: 0.4476 - acc: 0.7917     
Epoch 29/150
768/768 [==============================] - 0s - loss: 0.4539 - acc: 0.7865     
Epoch 30/150
768/768 [==============================] - 0s - loss: 0.4594 - acc: 0.7799     
Epoch 31/150
768/768 [==============================] - 0s - loss: 0.4502 - acc: 0.7917     
Epoch 32/150
768/768 [==============================] - 0s - loss: 0.4452 - acc: 0.7813     
Epoch 33/150
768/768 [==============================] - 0s - loss: 0.4425 - acc: 0.7852     
Epoch 34/150
768/768 [==============================] - 0s - loss: 0.4542 - acc: 0.7747     
Epoch 35/150
768/768 [==============================] - 0s - loss: 0.4423 - acc: 0.7917     
Epoch 36/150
768/768 [==============================] - 0s - loss: 0.4443 - acc: 0.8008     
Epoch 37/150
768/768 [==============================] - 0s - loss: 0.4434 - acc: 0.7852     
Epoch 38/150
768/768 [==============================] - 0s - loss: 0.4397 - acc: 0.7943     
Epoch 39/150
768/768 [==============================] - 0s - loss: 0.4480 - acc: 0.7943     
Epoch 40/150
768/768 [==============================] - 0s - loss: 0.4460 - acc: 0.7878     
Epoch 41/150
768/768 [==============================] - 0s - loss: 0.4463 - acc: 0.7969     
Epoch 42/150
768/768 [==============================] - 0s - loss: 0.4487 - acc: 0.7799     
Epoch 43/150
768/768 [==============================] - 0s - loss: 0.4462 - acc: 0.7904     
Epoch 44/150
768/768 [==============================] - 0s - loss: 0.4432 - acc: 0.7917     
Epoch 45/150
768/768 [==============================] - 0s - loss: 0.4390 - acc: 0.7943     
Epoch 46/150
768/768 [==============================] - 0s - loss: 0.4460 - acc: 0.7760     
Epoch 47/150
768/768 [==============================] - 0s - loss: 0.4415 - acc: 0.7839     
Epoch 48/150
768/768 [==============================] - 0s - loss: 0.4561 - acc: 0.7760     
Epoch 49/150
768/768 [==============================] - 0s - loss: 0.4407 - acc: 0.7813     
Epoch 50/150
768/768 [==============================] - 0s - loss: 0.4387 - acc: 0.7839     
Epoch 51/150
768/768 [==============================] - 0s - loss: 0.4434 - acc: 0.7852     
Epoch 52/150
768/768 [==============================] - 0s - loss: 0.4453 - acc: 0.7891     
Epoch 53/150
768/768 [==============================] - 0s - loss: 0.4520 - acc: 0.7878     
Epoch 54/150
768/768 [==============================] - 0s - loss: 0.4452 - acc: 0.7904     
Epoch 55/150
768/768 [==============================] - 0s - loss: 0.4425 - acc: 0.7878     
Epoch 56/150
768/768 [==============================] - 0s - loss: 0.4367 - acc: 0.7943     
Epoch 57/150
768/768 [==============================] - 0s - loss: 0.4515 - acc: 0.7721     
Epoch 58/150
768/768 [==============================] - 0s - loss: 0.4386 - acc: 0.7917     
Epoch 59/150
768/768 [==============================] - 0s - loss: 0.4431 - acc: 0.7865     
Epoch 60/150
768/768 [==============================] - 0s - loss: 0.4404 - acc: 0.7839     
Epoch 61/150
768/768 [==============================] - 0s - loss: 0.4348 - acc: 0.7826     
Epoch 62/150
768/768 [==============================] - 0s - loss: 0.4416 - acc: 0.7956     
Epoch 63/150
768/768 [==============================] - 0s - loss: 0.4366 - acc: 0.8021     
Epoch 64/150
768/768 [==============================] - 0s - loss: 0.4402 - acc: 0.7943     
Epoch 65/150
768/768 [==============================] - 0s - loss: 0.4373 - acc: 0.7878     
Epoch 66/150
768/768 [==============================] - 0s - loss: 0.4487 - acc: 0.7865     
Epoch 67/150
768/768 [==============================] - 0s - loss: 0.4383 - acc: 0.7943     
Epoch 68/150
768/768 [==============================] - 0s - loss: 0.4311 - acc: 0.8021     
Epoch 69/150
768/768 [==============================] - 0s - loss: 0.4258 - acc: 0.8008     
Epoch 70/150
768/768 [==============================] - 0s - loss: 0.4311 - acc: 0.7891     
Epoch 71/150
768/768 [==============================] - 0s - loss: 0.4468 - acc: 0.7878     
Epoch 72/150
768/768 [==============================] - 0s - loss: 0.4495 - acc: 0.7813     
Epoch 73/150
768/768 [==============================] - 0s - loss: 0.4344 - acc: 0.7891     
Epoch 74/150
768/768 [==============================] - 0s - loss: 0.4343 - acc: 0.7969     
Epoch 75/150
768/768 [==============================] - 0s - loss: 0.4406 - acc: 0.7826     
Epoch 76/150
768/768 [==============================] - 0s - loss: 0.4484 - acc: 0.7852     
Epoch 77/150
768/768 [==============================] - 0s - loss: 0.4366 - acc: 0.7826     
Epoch 78/150
768/768 [==============================] - 0s - loss: 0.4408 - acc: 0.7865     
Epoch 79/150
768/768 [==============================] - 0s - loss: 0.4480 - acc: 0.7852     
Epoch 80/150
768/768 [==============================] - 0s - loss: 0.4510 - acc: 0.7813     
Epoch 81/150
768/768 [==============================] - 0s - loss: 0.4328 - acc: 0.7943     
Epoch 82/150
768/768 [==============================] - 0s - loss: 0.4362 - acc: 0.7917     
Epoch 83/150
768/768 [==============================] - 0s - loss: 0.4419 - acc: 0.7839     
Epoch 84/150
768/768 [==============================] - 0s - loss: 0.4425 - acc: 0.7813     
Epoch 85/150
768/768 [==============================] - 0s - loss: 0.4350 - acc: 0.7969     
Epoch 86/150
768/768 [==============================] - 0s - loss: 0.4322 - acc: 0.7930     
Epoch 87/150
768/768 [==============================] - 0s - loss: 0.4472 - acc: 0.7943     
Epoch 88/150
768/768 [==============================] - 0s - loss: 0.4386 - acc: 0.7917     
Epoch 89/150
768/768 [==============================] - 0s - loss: 0.4387 - acc: 0.7826     
Epoch 90/150
768/768 [==============================] - 0s - loss: 0.4366 - acc: 0.7904     
Epoch 91/150
768/768 [==============================] - 0s - loss: 0.4325 - acc: 0.7904     
Epoch 92/150
768/768 [==============================] - 0s - loss: 0.4445 - acc: 0.7839     
Epoch 93/150
768/768 [==============================] - 0s - loss: 0.4355 - acc: 0.7786     
Epoch 94/150
768/768 [==============================] - 0s - loss: 0.4529 - acc: 0.7799     
Epoch 95/150
768/768 [==============================] - 0s - loss: 0.4505 - acc: 0.7878     
Epoch 96/150
768/768 [==============================] - 0s - loss: 0.4391 - acc: 0.8008     
Epoch 97/150
768/768 [==============================] - 0s - loss: 0.4300 - acc: 0.7956     
Epoch 98/150
768/768 [==============================] - 0s - loss: 0.4389 - acc: 0.7799     
Epoch 99/150
768/768 [==============================] - 0s - loss: 0.4289 - acc: 0.7943     
Epoch 100/150
768/768 [==============================] - 0s - loss: 0.4425 - acc: 0.7995     
Epoch 101/150
768/768 [==============================] - 0s - loss: 0.4380 - acc: 0.7878     
Epoch 102/150
768/768 [==============================] - 0s - loss: 0.4343 - acc: 0.7799     
Epoch 103/150
768/768 [==============================] - 0s - loss: 0.4378 - acc: 0.7865     
Epoch 104/150
768/768 [==============================] - 0s - loss: 0.4377 - acc: 0.7956     
Epoch 105/150
768/768 [==============================] - 0s - loss: 0.4465 - acc: 0.7813     
Epoch 106/150
768/768 [==============================] - 0s - loss: 0.4218 - acc: 0.7930     
Epoch 107/150
768/768 [==============================] - 0s - loss: 0.4342 - acc: 0.7917     
Epoch 108/150
768/768 [==============================] - 0s - loss: 0.4349 - acc: 0.7891     
Epoch 109/150
768/768 [==============================] - 0s - loss: 0.4242 - acc: 0.7930     
Epoch 110/150
768/768 [==============================] - 0s - loss: 0.4401 - acc: 0.7721     
Epoch 111/150
768/768 [==============================] - 0s - loss: 0.4281 - acc: 0.7943     
Epoch 112/150
768/768 [==============================] - 0s - loss: 0.4234 - acc: 0.7943     
Epoch 113/150
768/768 [==============================] - 0s - loss: 0.4359 - acc: 0.8008     
Epoch 114/150
768/768 [==============================] - 0s - loss: 0.4282 - acc: 0.7943     
Epoch 115/150
768/768 [==============================] - 0s - loss: 0.4373 - acc: 0.7813     
Epoch 116/150
768/768 [==============================] - 0s - loss: 0.4297 - acc: 0.7956     
Epoch 117/150
768/768 [==============================] - 0s - loss: 0.4279 - acc: 0.7826     
Epoch 118/150
768/768 [==============================] - 0s - loss: 0.4285 - acc: 0.7904     
Epoch 119/150
768/768 [==============================] - 0s - loss: 0.4266 - acc: 0.7969     
Epoch 120/150
768/768 [==============================] - 0s - loss: 0.4340 - acc: 0.7852     
Epoch 121/150
768/768 [==============================] - 0s - loss: 0.4329 - acc: 0.7995     
Epoch 122/150
768/768 [==============================] - 0s - loss: 0.4339 - acc: 0.7930     
Epoch 123/150
768/768 [==============================] - 0s - loss: 0.4220 - acc: 0.7969     
Epoch 124/150
768/768 [==============================] - 0s - loss: 0.4434 - acc: 0.7852     
Epoch 125/150
768/768 [==============================] - 0s - loss: 0.4277 - acc: 0.7852     
Epoch 126/150
768/768 [==============================] - 0s - loss: 0.4273 - acc: 0.7982     
Epoch 127/150
768/768 [==============================] - 0s - loss: 0.4392 - acc: 0.7760     
Epoch 128/150
768/768 [==============================] - 0s - loss: 0.4328 - acc: 0.8021     
Epoch 129/150
768/768 [==============================] - 0s - loss: 0.4375 - acc: 0.7917     
Epoch 130/150
768/768 [==============================] - 0s - loss: 0.4299 - acc: 0.7969     
Epoch 131/150
768/768 [==============================] - 0s - loss: 0.4294 - acc: 0.7813     
Epoch 132/150
768/768 [==============================] - 0s - loss: 0.4325 - acc: 0.7982     
Epoch 133/150
768/768 [==============================] - 0s - loss: 0.4237 - acc: 0.7956     
Epoch 134/150
768/768 [==============================] - 0s - loss: 0.4284 - acc: 0.7969     
Epoch 135/150
768/768 [==============================] - 0s - loss: 0.4314 - acc: 0.7865     
Epoch 136/150
768/768 [==============================] - 0s - loss: 0.4342 - acc: 0.7878     
Epoch 137/150
768/768 [==============================] - 0s - loss: 0.4205 - acc: 0.7969     
Epoch 138/150
768/768 [==============================] - 0s - loss: 0.4441 - acc: 0.7865     
Epoch 139/150
768/768 [==============================] - 0s - loss: 0.4249 - acc: 0.7969     
Epoch 140/150
768/768 [==============================] - 0s - loss: 0.4262 - acc: 0.7930     
Epoch 141/150
768/768 [==============================] - 0s - loss: 0.4391 - acc: 0.7982     
Epoch 142/150
768/768 [==============================] - 0s - loss: 0.4253 - acc: 0.7891     
Epoch 143/150
768/768 [==============================] - 0s - loss: 0.4279 - acc: 0.7878     
Epoch 144/150
768/768 [==============================] - 0s - loss: 0.4299 - acc: 0.7917     
Epoch 145/150
768/768 [==============================] - 0s - loss: 0.4314 - acc: 0.7917     
Epoch 146/150
768/768 [==============================] - 0s - loss: 0.4316 - acc: 0.7839     
Epoch 147/150
768/768 [==============================] - 0s - loss: 0.4309 - acc: 0.7878     
Epoch 148/150
768/768 [==============================] - 0s - loss: 0.4276 - acc: 0.7969     
Epoch 149/150
768/768 [==============================] - 0s - loss: 0.4323 - acc: 0.7852     
Epoch 150/150
768/768 [==============================] - 0s - loss: 0.4252 - acc: 0.7917     
Out[6]:
<keras.callbacks.History at 0x7fd5b13889e8>

In [7]:
# evaluate the model
scores = model.evaluate(X, Y)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))


544/768 [====================>.........] - ETA: 0sacc: 80.34%

In [8]:
# calculate predictions
predictions = model.predict(X)
print(predictions)
# round predictions
rounded = [float(numpy.round(x)) for x in predictions]
print(rounded)


[[  6.69133127e-01]
 [  2.76231561e-02]
 [  7.89506853e-01]
 [  1.68273617e-02]
 [  9.46051478e-01]
 [  1.65788710e-01]
 [  4.83307727e-02]
 [  4.43784267e-01]
 [  9.65585947e-01]
 [  3.26710612e-01]
 [  5.48393875e-02]
 [  8.59522879e-01]
 [  5.11400104e-01]
 [  9.16026533e-01]
 [  7.95248926e-01]
 [  1.92050442e-01]
 [  6.98330939e-01]
 [  2.33859256e-01]
 [  2.93844342e-01]
 [  2.44181976e-01]
 [  5.47310829e-01]
 [  2.38394111e-01]
 [  9.20724630e-01]
 [  3.43742341e-01]
 [  8.72338057e-01]
 [  6.68654859e-01]
 [  7.40493774e-01]
 [  2.53390130e-02]
 [  7.24128127e-01]
 [  1.03515543e-01]
 [  3.06969762e-01]
 [  8.47428143e-01]
 [  2.81528439e-02]
 [  1.88798353e-03]
 [  4.94244367e-01]
 [  4.35498595e-01]
 [  6.15345955e-01]
 [  4.63583231e-01]
 [  1.20821252e-01]
 [  6.43162251e-01]
 [  8.18563640e-01]
 [  6.79299057e-01]
 [  1.51616976e-01]
 [  9.50630605e-01]
 [  6.72560632e-01]
 [  9.59127069e-01]
 [  4.41976875e-01]
 [  2.86451429e-02]
 [  4.73433018e-01]
 [  1.21639580e-01]
 [  9.44733794e-04]
 [  1.14290349e-01]
 [  1.01323709e-01]
 [  8.93547893e-01]
 [  8.43738794e-01]
 [  8.37828591e-03]
 [  9.47273850e-01]
 [  3.78912330e-01]
 [  7.84932256e-01]
 [  1.72062248e-01]
 [  1.97678171e-02]
 [  5.53115487e-01]
 [  1.67470351e-02]
 [  7.76982665e-01]
 [  4.07866955e-01]
 [  1.11154176e-01]
 [  1.31829783e-01]
 [  3.16567957e-01]
 [  1.49132833e-02]
 [  2.23417073e-01]
 [  1.29130170e-01]
 [  8.08755517e-01]
 [  6.74104095e-01]
 [  2.26251706e-02]
 [  2.62170751e-02]
 [  3.23381834e-02]
 [  5.24047203e-02]
 [  2.35828042e-01]
 [  7.99576938e-01]
 [  5.70103340e-02]
 [  1.48988932e-01]
 [  1.56241003e-02]
 [  1.41618952e-01]
 [  1.84490848e-02]
 [  6.37219846e-01]
 [  2.01348349e-01]
 [  5.76111138e-01]
 [  1.73783034e-01]
 [  8.15722525e-01]
 [  2.45224256e-02]
 [  5.34622930e-03]
 [  2.06475392e-01]
 [  3.73948663e-01]
 [  2.75979698e-01]
 [  7.40588307e-02]
 [  7.55213022e-01]
 [  5.09289466e-02]
 [  1.45630622e-02]
 [  1.51741222e-01]
 [  8.05472672e-01]
 [  8.13410878e-01]
 [  1.85065195e-01]
 [  3.05911002e-04]
 [  1.78958271e-02]
 [  3.28437597e-01]
 [  5.65931201e-01]
 [  2.91924789e-05]
 [  6.83941126e-01]
 [  1.16348326e-01]
 [  4.11565974e-02]
 [  6.79755330e-01]
 [  8.69011521e-01]
 [  5.58638461e-02]
 [  8.21023881e-02]
 [  8.83722544e-01]
 [  4.75948960e-01]
 [  4.82171088e-01]
 [  2.30581433e-01]
 [  1.03324257e-01]
 [  1.38909705e-02]
 [  9.16669548e-01]
 [  2.55967140e-01]
 [  1.26770377e-01]
 [  2.30245456e-01]
 [  7.74116740e-02]
 [  5.04455268e-01]
 [  3.29047322e-01]
 [  1.65348321e-01]
 [  3.73783708e-01]
 [  4.40197408e-01]
 [  8.51796150e-01]
 [  5.88658214e-01]
 [  9.21780705e-01]
 [  4.11899269e-01]
 [  3.29556800e-02]
 [  3.65873933e-01]
 [  5.38355336e-02]
 [  4.71399501e-02]
 [  1.70125216e-01]
 [  3.18676502e-01]
 [  3.27984124e-01]
 [  3.55091333e-01]
 [  2.56607115e-01]
 [  3.70088905e-01]
 [  5.93357682e-01]
 [  6.20962121e-04]
 [  1.13541283e-01]
 [  5.93073249e-01]
 [  5.00194728e-01]
 [  1.21848835e-02]
 [  8.41940939e-01]
 [  2.17973694e-01]
 [  9.42423880e-01]
 [  3.40437293e-01]
 [  9.48982239e-01]
 [  9.25409257e-01]
 [  3.44716683e-02]
 [  2.71657407e-01]
 [  2.07361747e-02]
 [  9.32211936e-01]
 [  2.83629090e-01]
 [  2.33667731e-01]
 [  2.42609277e-01]
 [  5.71690202e-02]
 [  1.71981499e-01]
 [  4.08073545e-01]
 [  4.49571371e-01]
 [  4.13742095e-01]
 [  3.19927722e-01]
 [  1.86247397e-02]
 [  8.08123350e-02]
 [  4.15818930e-01]
 [  1.99990690e-01]
 [  1.92325160e-01]
 [  5.75491562e-02]
 [  9.14961040e-01]
 [  8.75633284e-02]
 [  6.45047128e-01]
 [  7.75220871e-01]
 [  6.55335903e-01]
 [  1.87739227e-02]
 [  1.73597187e-01]
 [  8.56096740e-04]
 [  2.46796869e-02]
 [  4.37808186e-01]
 [  9.53592479e-01]
 [  9.65496123e-01]
 [  4.66735899e-01]
 [  7.02466309e-01]
 [  7.77713537e-01]
 [  6.36030138e-02]
 [  3.61408025e-01]
 [  7.22734928e-01]
 [  8.37203860e-01]
 [  7.31195807e-02]
 [  9.25874591e-01]
 [  4.86738235e-02]
 [  6.41561002e-02]
 [  4.11571294e-01]
 [  5.05166233e-01]
 [  4.18051183e-02]
 [  3.23392838e-01]
 [  8.97244588e-02]
 [  2.52927020e-02]
 [  3.65476489e-01]
 [  1.07645288e-01]
 [  9.55231607e-01]
 [  7.22413659e-01]
 [  6.65060058e-02]
 [  9.09435749e-01]
 [  3.55156064e-02]
 [  3.39220762e-01]
 [  7.85226166e-01]
 [  5.78145146e-01]
 [  6.59000993e-01]
 [  9.50459719e-01]
 [  5.16492605e-01]
 [  6.57447278e-01]
 [  2.79095173e-01]
 [  4.72929180e-01]
 [  3.08695048e-01]
 [  6.83312058e-01]
 [  1.89550966e-01]
 [  6.34345710e-01]
 [  3.99867073e-02]
 [  3.50513309e-02]
 [  5.63690290e-02]
 [  8.14402401e-01]
 [  6.96182132e-01]
 [  1.61163583e-01]
 [  6.23364389e-01]
 [  8.83745611e-01]
 [  1.07603446e-02]
 [  4.43019509e-01]
 [  6.17952421e-02]
 [  8.64806175e-01]
 [  9.37050164e-01]
 [  6.98312640e-01]
 [  8.71774733e-01]
 [  8.89999978e-03]
 [  2.22165044e-02]
 [  1.78270340e-01]
 [  2.89215595e-01]
 [  6.77285910e-01]
 [  7.79156983e-01]
 [  9.17459130e-01]
 [  4.47556376e-01]
 [  1.33724660e-01]
 [  6.62957072e-01]
 [  1.13412719e-02]
 [  3.26938212e-01]
 [  1.02552556e-01]
 [  4.63746861e-03]
 [  4.17990796e-02]
 [  4.92215604e-01]
 [  2.17934996e-01]
 [  1.59721255e-01]
 [  8.66503268e-02]
 [  3.10396671e-01]
 [  9.34829056e-01]
 [  7.05407858e-01]
 [  7.00977921e-01]
 [  1.48129255e-01]
 [  3.58421952e-01]
 [  4.57454115e-01]
 [  1.86361909e-01]
 [  8.20459783e-01]
 [  6.57297373e-01]
 [  4.27286364e-02]
 [  6.01551116e-01]
 [  8.27111661e-01]
 [  6.74460009e-02]
 [  7.54653662e-02]
 [  4.22947481e-02]
 [  2.28885502e-01]
 [  2.77979255e-01]
 [  2.10130244e-01]
 [  5.30661009e-02]
 [  1.51901692e-01]
 [  1.71749946e-02]
 [  3.93694192e-01]
 [  7.25191653e-01]
 [  4.42956150e-01]
 [  6.79744720e-01]
 [  2.50225157e-01]
 [  6.58048093e-01]
 [  6.94375336e-01]
 [  5.62073469e-01]
 [  7.30496719e-02]
 [  3.19000095e-01]
 [  1.23255597e-02]
 [  2.25756019e-01]
 [  8.68358433e-01]
 [  7.67417192e-01]
 [  3.99903715e-01]
 [  6.98215544e-01]
 [  5.40835619e-01]
 [  7.53112957e-02]
 [  5.97460151e-01]
 [  1.47311807e-01]
 [  8.75646174e-01]
 [  6.54390693e-01]
 [  1.33306146e-01]
 [  5.93916237e-01]
 [  2.18872070e-01]
 [  3.36343735e-01]
 [  8.39229047e-01]
 [  6.31606132e-02]
 [  2.73947030e-01]
 [  5.94919503e-01]
 [  9.20554549e-02]
 [  2.26943523e-01]
 [  3.62879604e-01]
 [  2.11203784e-01]
 [  6.28629148e-01]
 [  1.34099543e-01]
 [  1.22310175e-02]
 [  6.11192882e-01]
 [  4.42262918e-01]
 [  7.62062311e-01]
 [  2.07434267e-01]
 [  1.00207485e-01]
 [  1.14346698e-01]
 [  7.64156520e-01]
 [  7.22216219e-02]
 [  3.16554278e-01]
 [  6.34512901e-01]
 [  8.67703319e-01]
 [  1.39705881e-01]
 [  1.83766857e-01]
 [  4.20007825e-01]
 [  5.87166473e-02]
 [  9.23856318e-01]
 [  1.55980930e-01]
 [  2.36333013e-02]
 [  8.91005635e-01]
 [  2.82918692e-01]
 [  2.97361881e-01]
 [  9.41324651e-01]
 [  8.81237209e-01]
 [  2.61302348e-02]
 [  8.85223597e-02]
 [  6.08200626e-03]
 [  3.35173786e-01]
 [  1.65777668e-01]
 [  3.94947141e-01]
 [  4.87696260e-01]
 [  2.67409950e-01]
 [  5.27673326e-02]
 [  9.72410142e-01]
 [  1.35933533e-01]
 [  2.81309515e-01]
 [  5.35448790e-02]
 [  3.22299711e-02]
 [  1.71098888e-01]
 [  7.16134965e-01]
 [  7.11609006e-01]
 [  5.14046133e-01]
 [  2.10456848e-01]
 [  9.41191673e-01]
 [  9.36056495e-01]
 [  5.19987047e-01]
 [  3.62799525e-01]
 [  5.97153664e-01]
 [  3.35252315e-01]
 [  1.62919253e-01]
 [  3.38248789e-01]
 [  6.97023189e-03]
 [  2.00931984e-03]
 [  4.53759372e-01]
 [  6.46216929e-01]
 [  1.28095493e-01]
 [  4.95020002e-02]
 [  1.50655910e-01]
 [  7.28110313e-01]
 [  8.56477439e-01]
 [  1.05041987e-03]
 [  1.27858356e-01]
 [  8.49531770e-01]
 [  3.41485053e-01]
 [  1.44030601e-01]
 [  8.13107099e-03]
 [  2.21131556e-02]
 [  8.56535435e-02]
 [  5.61966747e-02]
 [  1.14448920e-01]
 [  3.71142477e-01]
 [  5.82575858e-01]
 [  7.40189791e-01]
 [  2.04053745e-01]
 [  3.61009300e-01]
 [  8.63334954e-01]
 [  3.05909701e-02]
 [  9.72275659e-02]
 [  6.79121315e-01]
 [  3.48455548e-01]
 [  3.00294638e-01]
 [  1.99874863e-01]
 [  6.37551257e-03]
 [  8.07079017e-01]
 [  2.11284712e-01]
 [  2.95413136e-01]
 [  5.29321074e-01]
 [  1.87951669e-01]
 [  7.83616006e-01]
 [  6.78659976e-01]
 [  2.96200156e-01]
 [  3.08031123e-02]
 [  8.85988772e-01]
 [  7.89766788e-01]
 [  3.04542840e-01]
 [  2.89864898e-01]
 [  5.25933206e-02]
 [  1.59364432e-01]
 [  6.97344661e-01]
 [  1.88894525e-01]
 [  5.35281487e-02]
 [  7.21068025e-01]
 [  8.94221757e-03]
 [  4.04634207e-01]
 [  2.92497694e-01]
 [  2.50884369e-02]
 [  1.82667553e-01]
 [  1.93885624e-01]
 [  9.33075905e-01]
 [  9.47875619e-01]
 [  3.32830101e-02]
 [  9.48759377e-01]
 [  2.32361525e-01]
 [  3.79491836e-01]
 [  1.22900039e-01]
 [  6.64378405e-02]
 [  5.16831502e-03]
 [  1.40707880e-01]
 [  8.15494955e-02]
 [  8.19421411e-01]
 [  7.92620659e-01]
 [  4.71857667e-01]
 [  3.85403237e-03]
 [  1.73374325e-01]
 [  5.65617323e-01]
 [  6.66853264e-02]
 [  1.66890129e-01]
 [  3.74813229e-01]
 [  3.68470401e-01]
 [  9.92150426e-01]
 [  3.63575816e-02]
 [  9.36737135e-02]
 [  1.19627669e-01]
 [  4.86645363e-02]
 [  5.33989398e-03]
 [  2.08063424e-01]
 [  2.08533943e-01]
 [  5.88748939e-02]
 [  1.81719095e-01]
 [  9.02376175e-01]
 [  3.12882215e-01]
 [  1.56993061e-01]
 [  9.34724867e-01]
 [  4.24097002e-01]
 [  1.74446106e-01]
 [  4.94188815e-03]
 [  2.00082749e-01]
 [  7.71915615e-02]
 [  1.30963013e-01]
 [  5.99401332e-02]
 [  1.29166357e-02]
 [  1.50129095e-01]
 [  2.46327266e-01]
 [  7.82462537e-01]
 [  5.91029763e-01]
 [  2.07241893e-01]
 [  2.56464392e-01]
 [  3.13055247e-01]
 [  1.72201604e-01]
 [  1.23851024e-01]
 [  5.46855450e-01]
 [  3.75137210e-01]
 [  2.96704859e-01]
 [  3.17076176e-01]
 [  6.78284109e-01]
 [  8.07320550e-02]
 [  9.38020200e-02]
 [  9.54366941e-03]
 [  8.81781697e-01]
 [  7.08298445e-01]
 [  4.66044545e-01]
 [  9.10685956e-01]
 [  5.20073026e-02]
 [  7.46245086e-01]
 [  1.62655413e-01]
 [  7.09595904e-02]
 [  1.08895756e-01]
 [  6.10145211e-01]
 [  2.18142774e-02]
 [  5.00828087e-01]
 [  2.02488273e-01]
 [  2.22843681e-02]
 [  9.08468187e-01]
 [  8.94724131e-01]
 [  3.75670218e-03]
 [  1.00824535e-01]
 [  9.81965244e-01]
 [  1.29058748e-01]
 [  1.40952513e-01]
 [  8.16628784e-02]
 [  6.72540545e-01]
 [  3.52956176e-01]
 [  1.13401301e-01]
 [  1.36240348e-01]
 [  2.26144746e-01]
 [  5.58762699e-02]
 [  3.98989208e-02]
 [  6.84920922e-02]
 [  5.10752760e-02]
 [  5.67733288e-01]
 [  8.62782657e-01]
 [  4.75535512e-01]
 [  1.08360685e-01]
 [  5.35068810e-01]
 [  2.17825640e-02]
 [  2.30336234e-01]
 [  1.14266910e-01]
 [  5.91376841e-01]
 [  2.79357255e-01]
 [  2.29910221e-02]
 [  7.82695692e-03]
 [  2.05934495e-02]
 [  2.50433862e-01]
 [  1.01690933e-01]
 [  1.26479536e-01]
 [  3.07431281e-01]
 [  2.18364626e-01]
 [  1.41974270e-01]
 [  1.64126024e-01]
 [  6.71512544e-01]
 [  9.88159329e-02]
 [  8.22659358e-02]
 [  3.68754715e-01]
 [  8.80137026e-01]
 [  5.94202518e-01]
 [  4.04523402e-01]
 [  3.74087274e-01]
 [  5.29172644e-02]
 [  7.56536350e-02]
 [  9.65816379e-01]
 [  9.61135149e-01]
 [  4.21086520e-01]
 [  4.41282064e-01]
 [  5.86067796e-01]
 [  3.77731286e-02]
 [  1.06651261e-01]
 [  1.84923694e-01]
 [  5.69286309e-02]
 [  5.60963266e-02]
 [  5.54858804e-01]
 [  8.48006085e-02]
 [  1.31405875e-01]
 [  6.19378626e-01]
 [  1.03404909e-01]
 [  4.39416915e-01]
 [  9.73115861e-01]
 [  1.25276491e-01]
 [  1.41999543e-01]
 [  9.10430215e-03]
 [  3.75894979e-02]
 [  1.04546040e-01]
 [  1.93937048e-01]
 [  6.63614810e-01]
 [  4.34877336e-01]
 [  5.09575345e-02]
 [  9.49606940e-04]
 [  1.84964269e-01]
 [  3.18474583e-02]
 [  7.75931329e-02]
 [  2.26795629e-01]
 [  3.80059034e-01]
 [  3.58024806e-01]
 [  4.67264980e-01]
 [  5.50529957e-01]
 [  3.96225333e-01]
 [  1.30479842e-01]
 [  2.32227415e-01]
 [  2.52278268e-01]
 [  7.31898725e-01]
 [  3.00079547e-02]
 [  6.61270499e-01]
 [  1.47233710e-01]
 [  9.24016714e-01]
 [  3.71785983e-02]
 [  8.25977504e-01]
 [  2.36750439e-01]
 [  5.22537947e-01]
 [  3.82229120e-01]
 [  7.92988002e-01]
 [  7.82690227e-01]
 [  6.69265389e-02]
 [  1.75256670e-01]
 [  6.54669762e-01]
 [  2.22244754e-01]
 [  1.13863256e-02]
 [  1.02589272e-01]
 [  5.26794530e-02]
 [  8.30073476e-01]
 [  8.25040400e-01]
 [  3.80444556e-01]
 [  9.09908175e-01]
 [  3.15600410e-02]
 [  5.28272986e-01]
 [  2.30423305e-02]
 [  2.49750331e-01]
 [  9.39334273e-01]
 [  9.41298962e-01]
 [  3.29882026e-01]
 [  8.29225719e-01]
 [  4.88035642e-02]
 [  2.24743001e-02]
 [  8.33549071e-03]
 [  4.88131613e-01]
 [  4.61418122e-01]
 [  5.87096334e-01]
 [  1.25250652e-01]
 [  9.24443662e-01]
 [  9.02202353e-02]
 [  1.01679184e-01]
 [  2.10626081e-01]
 [  4.85766754e-02]
 [  1.08775005e-01]
 [  5.00337899e-01]
 [  3.11764795e-02]
 [  3.60686541e-01]
 [  9.19561610e-02]
 [  1.06642701e-01]
 [  1.91605650e-02]
 [  1.20636642e-01]
 [  2.95807928e-01]
 [  1.34529561e-01]
 [  4.27013598e-02]
 [  4.31862742e-01]
 [  1.23201804e-02]
 [  5.41432574e-03]
 [  3.52340102e-01]
 [  5.64757407e-01]
 [  1.21214449e-01]
 [  3.95228565e-01]
 [  5.30405879e-01]
 [  5.39639473e-01]
 [  9.24350142e-01]
 [  8.27533841e-01]
 [  4.57944162e-02]
 [  6.47397339e-02]
 [  1.51668921e-01]
 [  3.97311777e-01]
 [  2.30054200e-01]
 [  6.26411587e-02]
 [  4.21672106e-01]
 [  3.97881716e-02]
 [  7.66590357e-01]
 [  3.72958690e-01]
 [  2.68371105e-01]
 [  6.51666462e-01]
 [  9.51921165e-01]
 [  9.53560412e-01]
 [  8.49690080e-01]
 [  3.49939615e-01]
 [  1.47563607e-01]
 [  3.47487479e-01]
 [  3.41318190e-01]
 [  3.20259422e-01]
 [  5.03262758e-01]
 [  8.76921654e-01]
 [  7.56762326e-02]
 [  1.64639473e-01]
 [  2.17854887e-01]
 [  1.05839625e-01]
 [  8.57105553e-01]
 [  5.55156648e-01]
 [  1.08480915e-01]
 [  4.23412889e-01]
 [  5.76610193e-02]
 [  1.66911818e-02]
 [  8.08034003e-01]
 [  2.07802132e-01]
 [  2.95156717e-01]
 [  2.23442912e-01]
 [  2.66177356e-01]
 [  1.27984509e-01]
 [  1.54352576e-01]
 [  2.99543262e-01]
 [  8.16201866e-01]
 [  1.15520105e-01]
 [  8.00918102e-01]
 [  4.17054325e-01]
 [  7.67402530e-01]
 [  2.47768238e-02]
 [  4.25893545e-01]
 [  5.14558733e-01]
 [  1.72887176e-01]
 [  4.36571278e-02]
 [  6.56651855e-01]
 [  2.46737987e-01]
 [  3.91028225e-01]
 [  7.55823970e-01]
 [  4.72734749e-01]
 [  7.36361369e-02]
 [  1.77924067e-01]
 [  3.81906271e-01]
 [  2.20875576e-01]
 [  7.51976669e-01]
 [  4.01525646e-01]
 [  5.84552102e-02]
 [  3.96521538e-01]
 [  7.85958767e-01]
 [  6.27567247e-02]
 [  4.87160981e-02]
 [  9.37407017e-01]
 [  9.51467037e-01]
 [  1.08565547e-01]
 [  5.45866013e-01]
 [  2.89786190e-01]
 [  5.69586456e-02]
 [  3.88432980e-01]
 [  6.58034384e-01]
 [  3.18659574e-01]
 [  6.57857433e-02]
 [  2.88806707e-01]
 [  2.12648585e-01]
 [  1.59386069e-01]
 [  1.39169157e-01]
 [  9.89973843e-02]
 [  2.36023381e-01]
 [  1.53098464e-01]
 [  8.52762699e-01]
 [  3.15767735e-01]
 [  2.71127999e-01]
 [  1.64778709e-01]
 [  6.57965941e-03]
 [  1.45636156e-01]
 [  8.98772553e-02]
 [  2.91927129e-01]
 [  8.47510040e-01]
 [  8.49356800e-02]
 [  4.94579002e-02]
 [  5.76954424e-01]
 [  9.53391314e-01]
 [  5.77904880e-01]
 [  6.54944599e-01]
 [  3.73309970e-01]
 [  9.45530355e-01]
 [  5.93535006e-01]
 [  5.30993640e-01]
 [  2.75501221e-01]
 [  8.40515867e-02]
 [  4.54014510e-01]
 [  7.53469348e-01]
 [  5.10430872e-01]
 [  4.64382648e-01]
 [  4.84882832e-01]
 [  1.33326545e-01]
 [  8.66154730e-01]
 [  1.07524619e-01]
 [  9.41939712e-01]
 [  5.45489900e-02]
 [  4.23007339e-01]
 [  3.85734618e-01]
 [  3.36406112e-01]
 [  4.38791364e-01]
 [  3.86212170e-02]]
[1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

In [ ]: