In [1]:
%pylab inline
pylab.rcParams['figure.figsize'] = (14, 14)
In [2]:
from sklearn.datasets import load_digits as load_data
from sklearn.naive_bayes import GaussianNB
In [3]:
# This is all that's needed for scikit-plot
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
In [4]:
# Load data
X, y = load_data(return_X_y=True)
In [5]:
# Regular instance using GaussianNB class
nb = GaussianNB()
In [6]:
# Modification of instance of Scikit-Learn
classifier_factory(nb)
Out[6]:
In [7]:
# An object of Scikit-Learn using the modified version that can use a method plot_roc_curve
nb.plot_roc_curve(X, y, random_state=1)
Out[7]:
In [8]:
# Display plot
plt.show()
In [ ]:
In [9]:
from sklearn.ensemble import RandomForestClassifier
In [10]:
random_forest_clf = RandomForestClassifier(n_estimators=5, max_depth=5, random_state=1)
In [11]:
from scikitplot import classifier_factory
In [12]:
classifier_factory(random_forest_clf)
Out[12]:
In [13]:
random_forest_clf.plot_confusion_matrix(X, y, normalize=True)
Out[13]:
In [14]:
plt.show()
In [ ]:
In [15]:
from scikitplot import plotters as skplt
In [16]:
rf = RandomForestClassifier()
In [17]:
rf = rf.fit(X, y)
In [18]:
preds = rf.predict(X)
In [19]:
skplt.plot_confusion_matrix(y_true=y, y_pred=preds)
plt.show()
In [ ]:
In [ ]:
In [20]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import clustering_factory
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris as load_data
In [21]:
X, y = load_data(return_X_y=True)
In [22]:
kmeans = clustering_factory(KMeans(random_state=1))
In [23]:
kmeans.plot_elbow_curve(X, cluster_ranges=range(1, 11))
plt.show()
In [ ]:
In [ ]:
In [24]:
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris as load_data
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
In [25]:
X, y = load_data(return_X_y=True)
In [26]:
rf = classifier_factory(RandomForestClassifier(random_state=1))
In [27]:
rf.fit(X, y)
Out[27]:
In [28]:
rf.plot_feature_importances(feature_names=['petal length', 'petal width',
'sepal length', 'sepal width'])
plt.show()
In [ ]:
In [ ]:
In [29]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_breast_cancer as load_data
In [30]:
X, y = load_data(return_X_y=True)
In [31]:
lr = classifier_factory(LogisticRegression())
In [32]:
lr.plot_ks_statistic(X, y, random_state=1)
plt.show()
In [ ]:
In [33]:
from scikitplot import plotters as skplt
In [34]:
lr = LogisticRegression()
In [35]:
lr = lr.fit(X, y)
In [36]:
probas = lr.predict_proba(X)
In [37]:
skplt.plot_ks_statistic(y_true=y, y_probas=probas)
plt.show()
In [ ]:
In [ ]:
In [38]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_breast_cancer as load_data
In [39]:
X, y = load_data(return_X_y=True)
In [40]:
rf = classifier_factory(RandomForestClassifier())
In [41]:
rf.plot_learning_curve(X, y)
plt.show()
In [ ]:
In [42]:
from scikitplot import plotters as skplt
In [43]:
rf = RandomForestClassifier()
In [44]:
skplt.plot_learning_curve(rf, X, y)
plt.show()
In [ ]:
In [ ]:
In [45]:
from sklearn.decomposition import PCA
from sklearn.datasets import load_digits as load_data
import scikitplot.plotters as skplt
import matplotlib.pyplot as plt
In [46]:
X, y = load_data(return_X_y=True)
In [47]:
pca = PCA(random_state=1)
In [48]:
pca.fit(X)
Out[48]:
In [49]:
skplt.plot_pca_2d_projection(pca, X, y)
plt.show()
In [ ]:
In [ ]:
In [50]:
from sklearn.decomposition import PCA
from sklearn.datasets import load_digits as load_data
import scikitplot.plotters as skplt
import matplotlib.pyplot as plt
In [51]:
X, y = load_data(return_X_y=True)
In [52]:
pca = PCA(random_state=1)
In [53]:
pca.fit(X)
Out[53]:
In [54]:
skplt.plot_pca_component_variance(pca)
plt.show()
In [ ]:
In [ ]:
In [55]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits as load_data
In [56]:
X, y = load_data(return_X_y=True)
In [57]:
nb = classifier_factory(GaussianNB())
In [58]:
nb.plot_precision_recall_curve(X, y, random_state=1)
plt.show()
In [ ]:
In [ ]:
In [59]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import classifier_factory
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_digits as load_data
In [60]:
X, y = load_data(return_X_y=True)
In [61]:
nb = classifier_factory(GaussianNB())
In [62]:
nb.plot_roc_curve(X, y, random_state=1)
plt.show()
In [ ]:
In [63]:
from scikitplot import plotters as skplt
In [64]:
nb = GaussianNB()
In [65]:
nb = nb.fit(X, y)
In [66]:
probas = nb.predict_proba(X)
In [67]:
skplt.plot_roc_curve(y_true=y, y_probas=probas)
plt.show()
In [ ]:
In [ ]:
In [ ]:
In [68]:
from __future__ import absolute_import
import matplotlib.pyplot as plt
from scikitplot import clustering_factory
from sklearn.cluster import KMeans
from sklearn.datasets import load_iris as load_data
In [69]:
X, y = load_data(return_X_y=True)
In [70]:
kmeans = clustering_factory(KMeans(n_clusters=4, random_state=1))
In [71]:
kmeans.plot_silhouette(X)
plt.show()
In [ ]:
In [ ]: